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Abstract— The integrity of messages in vehicular ad-hoc
networks has been extensively studied by the research com-
munity, resulting in the IEEE 1609.2 standard, which provides
typical integrity guarantees. However, the correctness of message
contents is still one of the main challenges of applying dependable
and secure vehicular ad-hoc networks. One important use case
is the validity of position information contained in messages:
position verification mechanisms have been proposed in the
literature to provide this functionality. A more general approach
to validate such information is by applying misbehavior detection
mechanisms. In this paper, we consider misbehavior detection
by enhancing two position verification mechanisms and fusing
their results in a generalized framework using subjective logic.
We conduct extensive simulations using VEINS to study the
impact of traffic density, as well as several types of attackers and
fractions of attackers on our mechanisms. The obtained results
show the proposed framework can validate position information
as effectively as existing approaches in the literature, without
tailoring the framework specifically for this use case.

I. INTRODUCTION

Vehicular Ad-hoc Networks (VANETs) are ephemeral net-

works in which vehicles exchange information to provide

additional services. They are distinguished from other types

of ad-hoc networks by their high node mobility and reliance

on message contents, particularly position information. A

significant amount of research effort has been invested in stan-

dardizing these networks. Furthermore, vehicle manufacturers

are in the final stages of deploying initial commercial appli-

cations. One important focus of standardization beyond these

applications has been security, particularly message integrity.

Cryptographic message integrity for VANETs is specified in

IEEE 1609.2 [1] which includes a typical solution based on

Public Key Infrastructures (PKIs). Although researchers have

criticised the standard in various aspects, the overall goal of

verifying message integrity can be considered achieved.

However, standardization of message integrity lacks a key

aspect relevant to security: cryptographic mechanisms cannot

guarantee the correctness of data within a signed payload.

Message correctness is important both from a security perspec-

tive and for application functionality. In this paper, we focus
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on position information, which is important in VANETs from

many network layer’s perspectives [2]. Geographic routing,

traffic management, safety applications, and data aggregation

are all dependent on position information [2], [3].

Previous authors have studied data correctness in VANETs.

The authors of [3], [4] concentrated specifically on position

information while the authors of [5], [6] have taken the

more general approach of misbehavior detection. Misbehav-

ior detection can be categorized as data-centric and node-

centric [7]. Data-centric mechanisms verify the information

in packets directly (e.g., by cross-checking with sensors or

between messages), while node-centric mechanisms rely on

some types of trust (e.g., good behavior of particular neighbors

over time).

In this paper, we use position information as an example

of how misbehavior detection can be improved by subjective

logic [8]. In particular, we enhance two mechanisms proposed

in a previous work [3], Acceptance Range Threshold (ART)

and Pro-Active Neighbor Exchange. We also show how these

mechanisms can be integrated into a general framework which

we have previously proposed in [6]. We conduct simula-

tions using VEINS which uses both OMNeT++ to simulate

a VANET and SUMO to simulate the movements of the

vehicles of the VANET. The obtained results show that the

proposed work validates position information better than when

applying ART or Pro-Active Neighbor Exchange alone. In our

simulations, we study the impact of different parameters for

the mechanisms, traffic density, types of attackers and fractions

of attackers on misbehavior detection.

The remainder of this paper is organized as follows. In Sec-

tion II, we describe the existing approaches in the literature and

discuss how our work is distinct. In Section III, we describe

our enhancements and discuss the adopted framework. One

important contribution of this work is the simulative evaluation

which is described in Section IV. Finally, we conclude our

paper in Section V.

II. RELATED WORK

As discussed in the previous section, related work can be

organized in two groups: concrete detection mechanisms and

frameworks that combine information from different sources.

This section discusses both categories in more detail, and
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briefly introduces subjective logic, a logic framework that

our work uses to combine the output of multiple detection

mechanisms.

A. Position Verification Mechanisms

Leinmüller et al. [3] proposed a number of different position

verification detectors. This variety was in part the inspiration

for our work, where one important contribution is the ability

to incorporate different information sources. We now describe

one of their mechanisms in detail, which we aim to improve:

the Acceptance Range Threshold (ART). This mechanism

essentially relies on the fact that transmission range is limited.

Therefore, if attackers manipulate their position to be at some

distance away from their actual position, some vehicles will

receive messages with position information outside of their

reception range. In their work, the authors assume a fixed

reception range of 250 meters, and their attacker is stationary.

In our work, we propose to improve their work by estimating

the reception range with more accuracy, and by adapting

the mechanisms’ output from a binary value (legitimate or

falsified) to a subjective logic opinion (see Section II-C). This

opinion can then be fused with other detection results.

Another approach to position verification is the pro-active

exchange of neighbor tables [3]. This mechanism works by

piggy-backing a list of known neighbors to each beacon. Each

node uses this information to construct a neighbor table, which

stores information from direct neighbors (i.e., those from

which beacons were received), in particular the last known

position and list of neighbors. When a new beacon message

is received, its’ position is compared to all direct neighbors; if

the distance between the received message and the neighbor is

below a threshold, this means the sender of the new message

must be in that neighbor’s list of neighbors. The mechanism

verifies whether this is the case, and marks new beacons as

suspicious when they are missing from a number of tables.

This mechanism is an example of a cooperative detection

mechanism, as it relies on the exchange of these neighbor

tables. Because the mechanism considers information from

multiple positions, given enough honest nearby vehicles, the

mechanism should perform better. However, this mechanism

also has a high false positive rate, because lost messages,

neighbor mobility and delays may lead to the two-hop neigh-

bor table to be out of date. In our work, we enhance the output

of this detector by configuring uncertainty based on the amount

of neighbors, which increases the weight of this mechanism

as more information is available.

B. Frameworks

In addition to mechanisms designed to detect false positions,

the literature provides various frameworks to fuse information

from different sources.

Raya et al. [5] have described a framework to combine

various data-centric detection mechanisms. However, unlike

our approach, their main focus is computing node trustwor-

thiness, which is then used to evaluate the actual belief in

the received message. This approach is fundamentally based

on trust evaluation, which can be done using different logic

frameworks, such as Dempster-Shafer theory or Bayesian

inference. One of their results is that when uncertainty is

high, Dempster-Shafer theory performs well; we use subjective

logic in our work, which is an improvement over Dempster-

Shafer theory [8]. We also go beyond their work conceptually,

building on earlier work by Dietzel et al. [6], and represent

detection results in the logic framework, rather than just trust

between nodes. This makes our work more flexible: it can

conceptually represent aggregated information and can be

tuned depending on network parameters, as discussed in earlier

work [9].

Stübing et al. [4] have proposed a different approach;

rather than developing a generic framework for misbehavior

detection, they have developed a framework to combine several

information sources that are all concerned with correctness

of position and movement information. Specifically, their ap-

proach combines several autonomous data-centric mechanisms

(path prediction and maneuver recognition), which allow them

to accurately predict the movement of neighboring vehicles.

However, their work has two main disadvantages: it cannot

detect certain types of attacks (e.g., when the attacker consis-

tently falsifies her position by a fixed vector), and it cannot

be extended or combined to work with other detectors without

further work. In our framework, it is possible to integrate their

detection results, and the concrete detectors we improve in

this paper can detect exactly the attack that the framework by

Stübing et al. [4] cannot.

C. Subjective Logic

Subjective logic [8] is a framework for probabilistic infor-

mation fusion, which is capable of representing not just a

probabilistic truth value, but also a measure of uncertainty.

It is similar to the more well-known Dempster-Shafer Theory,

with the advantage that it integrates uncertainty directly, rather

than adding it as a separate component. This has the advantage

that fusion becomes easier. Subjective logic expresses the

truth value of a statement through so-called opinions ω =
(b, d, u, a), which consist of a belief, disbelief, uncertainty

and base rate. An intuitive interpretation is that belief is the

probability that the statement is true, disbelief is the probabil-

ity that it is false, and uncertainty represents the confidence

in this evaluation. The base rate expresses the probability in

the absence of evidence, which in this paper is assumed to

be 1/2. An opinion can be converted into a prediction by

computing the expectation, E = b+u ·a. Opinions are usually

held by subjects about objects: for example, several detection

mechanisms (subjects) can have different opinions about an

object (a new packet). Subjective logic provides operators to

fuse the opinions of these detectors with certain constraints.

In our earlier work, we have proposed the combination

of different mechanism outputs using subjective logic [6],

and shown that this approach can be applied not just to

simple beacon messages, but to other use cases, such as

aggregation [9]. One important feature for any such framework

is that existing work can be included into the framework,



without requiring extensive modification to that work. In

this paper, we address exactly this challenge, demonstrating

how earlier work by Leinmüller et al. [3] can be enhanced

by making small modifications and fusing the results with

subjective logic operators. To achieve this, one important step

is to convert the output of detectors to an opinion in a way that

preserves as much information as possible. One could imagine

outputting dogmatic opinions that reflect the binary output

of some detectors, but this will not provide a meaningful

improvement of detection results (at best, both agree and the

result is the same; if there is a conflict, the result will be 50-50,

and thus not support a decision). Therefore, this paper shows

that meaningful improvement can be achieved with limited

changes to the internal workings of the detectors. The opinions

created by this process can then be fused in a more useful way.

In future work we aim to do exactly that, addressing the ideas

proposed in [6], including enhancements such as node-centric

detection and proposals to adapt the opinion based on specific

traffic situations [10] or attacker probabilities [9].

III. MISBEHAVIOR DETECTION MECHANISMS

A. Enhanced ART Detector

A main disadvantage of the ART detector developed by

Leinmüller et al. [3] is that it can only detect attackers that

are in a specific area – those transmitting a location that

is outside of the transmission range of a receiver, while

that receiver can still receive the message. The detector will

inevitably suffer from false negatives – those cases where

the attacker is in range, and transmits a false position within

the transmission range of the receiver. However, there is

also a significant degree of false positives related to actual

transmission range. This degree of false positives comes from

the fact that transmission range is not fixed, but rather changes

depending on properties of the channel and obstacles in the

vicinity. In order to resolve these weaknesses of the detector,

fusion with other data sources is advisable. To enable this

fusion, we need to convert the detection result of the ART

detector into an opinion.

The idea behind the ART detector essentially assumes a

unit disc graph model for the transmission range, which

cannot be considered realistic even in free space environments.

Thus, we propose that the opinion, which we need for fusion

anyway, better represents the actual transmission range. We

should thus select a high belief for nearby positions, high

disbelief for positions far out of our transmission range,

and high uncertainty for positions around the edge of our

transmission range. To implement this, we chose a normal

distribution for the uncertainty u, with a mean of the expected

transmission range (i.e., the ART) and a configurable standard

deviation that should reflect the overall uncertainty about the

potential transmission range. We then chose the certainty to

be 1 − u, reflecting that we have evidence for the message

to be trustworthy. We split this into belief and disbelief, such

that d = (1 − u) · δ

2θ
and b = 1 − u − d, where δ is the

distance between received position and receiver, and θ is the

ART. This opinion can now be fused with, e.g., an opinion

about the sender or other data-centric sources.

Notice that the approach presented here can easily be

generalized to other variables for which the receiver can

compute an independent estimate that can be compared with

the message contents. In particular, for any estimated value δ,

mean θ and variance σ, we can compute:

ω = (
δ

2θ
e−

|δ−θ|2

2σ , (1−
δ

2θ
)e−

|δ−θ|2

2σ , e−
|δ−θ|2

2σ )

Indeed, this was the generic approach we imagined at the

start of this work. It is technically possible to substitute more

reliable estimates of the actual transmission range in this

equation. However, actually evaluating these estimates cannot

be done through simulation: the most accurate estimates of the

transmission range are a combination of physical layer models,

which are those used to create the simulation. Therefore,

we opted instead to show that this generalized approach is

feasible.

B. Pro-Active Neighbor Exchange

As noted by the original authors [3], the pro-active exchange

of neighbor tables suffers from high false positives. In order

to improve the overall detection accuracy of the system, we

improve this detector’s output for increased flexibility. As

in the enhanced ART detector, we mapped the output to

subjective logic opinions, which represent the degree of belief,

disbelief, and uncertainty. In particular, the output contains

an uncertainty that is inversely proportional to the amount of

available information.

Upon receiving a new beacon, the receiver computes the

distance from the new position information to each neighbor

and decide whether the sender of that beacon should be in

the neighbors’ neighbor table or not. Instead of making the

decision at this point, as in the original detector approach,

the receiver constructs two observations; sender is benign

and sender is not benign. These correspond to whether the

prediction is confirmed – for example, if the sender should

appear in a neighbor’s neighbor table and it appears, then

this is considered as an occurrence of the sender is benign

observation. We then compute an opinion as follows:

ω =

(

β

n
e−

x

10 ,
n− β

n
e−

x

10 , e−
x

10

)

Where β is the amount of benign samples, and n is the total

amount of samples.

Based on this detector, if the receiver does not have any

neighbor, he will be totally uncertain about the newly received

position information if it is correct or not. The more neighbors,

the more certainty in the detector’s decision.

C. Fusion Approach

In this work, we aim to demonstrate the advantages of

fusion, and do not discuss how node-centric approaches can be

incorporated into our framework (we refer interested readers to

our earlier work [6] for more details). Therefore, we elected to

use the consensus operator to combine two different opinions
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Fig. 1: Comparing different thresholds and variances to configure our enhanced detectors.

about a single beacon message, emphasizing that even this

relatively simple fusion operation has potential benefits for

detection accuracy, when compared to the individual mecha-

nisms. The consensus operator, also called cumulative fusion

operator, for two opinions about the same event is defined as:

ωA⊕ωB = (
bA · uB + bB · uA

k
,
dA · uB + dB · uA

k
,
uB · uA

k
)

where k = uA + uB − uA · uB .

For future work, we are analyzing the potential of other

operators for a more precise result. In our current implemen-

tation of the neighbor exchange, we essentially implement a

conservative approach – we assume that which was received

previously is accurate. As related work has already shown, it

is better to consider the age of information, as well as its’

source, rather than just assume that new information will fit

with existing information. However, this essentially represents

a node-centric approach to detection, which we considered out

of scope for this work – our aim is to show that even a fusion

of data-centric mechanisms alone improves detection results.

IV. EXPERIMENTAL EVALUATION

A. Methodology

We use the Veins framework [11] for simulating VANETs,

which uses the OMNeT++1 discrete event simulator to simu-

late the network and SUMO2 to simulate vehicle movement.

SUMO needs map and load data as input – for this purpose,

we use the recently introduced LuST [12] traffic scenario,

which is based on real traffic data in the city of Luxembourg.

We selected an area in the middle of the Luxembourg map

and started our simulation at three different points in time to

1Version 4.6
2Version 0.25.0

simulate different traffic load (and therefore different channel

loads). We implemented our detectors in an application layer

class that is integrated into the standard VEINS example.

Further simulation parameters are shown in Table I. For all

of the following graphs, we use ART to refer to a fixed

threshold, eART to refer to our enhancement of the ART

mechanism, Exchange to refer to the pro-active neighbor

exchange, and Merged to refer to the fused result. In all

graphs, we compute the false positive and false negative rate of

different mechanisms. The false positive rate is computed by

dividing the amount of detected non-malicious messages by

the total amount of received non-malicious messages, while

the false negative rate is computed by dividing the amount

of attacker messages that were not detected by the amount of

received attacker messages. This distinguishes our work from

that of Leinmüller et al. [3], who used a non-standard metric.

Channel TwoRayInterference, JakesFading,
LogNormalShadowing

PHY&MAC model standard VEINS 802.11p

Thermal noise -110dBm

Bit rate 18Mbps

Carrier frequency 5.890 GHz

Transmit power 10mW

Sensitivity -89dBm

Beacon rate 1 Hz

Attacker probability {0.01, 0.1, 0.2, 0.3}

TABLE I: Simulation parameters – full configuration available

on request

B. Parameter configuration

To select the ART threshold, which should approximate

the transmission range, we chose the low density scenario

(2 hours into the simulation), within which we executed

our application on all nodes for 360 seconds with a single
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Fig. 2: True and false positives for low and high density networks against randomized attackers (i.e., transmitting random

positions). Low density is after 2 hours of simulation, high density after 6 hours.

attacker (5 repetitions). We chose an easy to detect attacker

(which adds the vector (300, 300) to her actual position) for

these experiments. This gave us the graphs in Figures 1a,1d,

showing the false positive and false negative rates over the

different threshold values. The rates were computed by a

weighted average over the simulations. This should essentially

reproduces the results from Leinmüller et al. [3] in a more

realistic simulation setting, with a moving attacker. However,

the false positive and negative ratios in are too high for what

they assumed is the transmission range (250m). Based on these

results, we select 400m as the better choice – trading some

detection accuracy for less false positives.

Next, we were interested in whether a different threshold

for the pro-active neighbor exchange would make sense.

We performed the simulations again, this time varying that

threshold, and arrived at the results shown in Figures 1b,1e.

Because the true positive rate drops off at a threshold of

400, we selected the threshold to be 350m. This number also

reflects the typical maximum distance between receiver and

legitimate sender in our simulations. Having set the essential

thresholds of both mechanisms, we looked at the influence

of the variance parameter for our enhanced ART. The results

of this analysis are shown in Figures 1c,1f, which shows

that the merged results of the individual mechanisms slightly

outperforms the basic ART in both false positive and false

negative rate. This can be explained by the fact that only

messages with significant uncertainty are influenced by the

pro-active neighbor exchange, which is exactly what we aimed

to achieve.

C. Results & Discussion

The next step in our evaluation was the analysis of the

influence of three further factors: different traffic densities,

different attacker types and different fractions of attackers.

Compared to earlier work, we assume that our attackers are

typical vehicles, i.e., mobile nodes, rather than stationary

attackers. We formulate several attack strategies:

• a fixed modification (as above) where a specific vector is

added to the nodes’ current position

• a randomized modification, where a random position from

the actively simulated area is chosen

• a randomized vector modification, where a random posi-

tion in a square around the attacker is selected

To vary the traffic density, we selected three sections of the

LuST scenario; the situation after 2, 4 and 6 hours in the

area between the SUMO coordinates (2300, 2300) and (6300,

6300). Because each run uses a different random seed, the

individual runs have different densities – the densities in Table

I are approximate. The attacker probability in Table I is the

probability that any vehicle added to the simulation is an

attacker, which attacks with the selected strategy. Because of

the same random seed effect, the graphs in this section contain

the actual fraction of attackers on the X axis, and each point

represents exactly one simulation run. In the interest of space,

we present the most interesting results of our analysis here3.

Figure 2 shows results for the random attacker strategy,

which shows the first surprising result: both our fusion and

our implementation of the ART detector are nearly invariant

to node density, which contradicts with the result in Figure

3Code and other results available per request.
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Fig. 3: True and false positives for different extremes of the randomized modification strategy.

8b of the work by Leinmüller et al. [3]. We suspect the cause

of this difference is the way in which they generate density

differences; in our approach, the simulated area is fixed, but

the amount of nodes increases, while in their case, the density

is reduced by increasing the network size. Second, we observe

that our detection approach is quite invariant to the fraction of

nodes which is an attacker. However, this result is expected,

because both of the detectors we have implemented are data-

centric mechanisms, one of which is completely autonomous.

Also, our attackers do not have a collaborative strategy: one

could imagine an attack strategy in which multiple attackers

transmit false positions, leading to biased results from the pro-

active neighbor exchange.

A second notable feature of our results is the relatively

low true positive rate for some situations, particularly those

where the attacker’s strategy is a relatively small modification

of his own position, as shown in Figures 4 and 3. As discussed

previously, there are some attackers which cannot be detected

by looking only at the transmission range, e.g., attackers

that introduce a minimal change in their location. We have

chosen not to modify our metric for this case, because it

is difficult to find a reasonable definition of attack if we

want to exclude these cases. In particular, our metric also

considers correct messages (i.e., messages where the claimed

and actual positions of the attacker are the same) as messages

that should be detected. This weakness also exists in the work

of Leinmüller et al. [3], as can be observed in Figure 8a of

their paper. This leads to a very low true positive rate for

attackers that make small modifications to their position. In

this paper, the main result is that merging information from

different sources leads to a reasonable result in all cases. In

future work we plan to show that these attacks can be detected

by integrating additional mechanisms into our framework.

With these results, we have shown that fusion is feasible

for this use case even if we disregard message history and

node trust. Because our mechanisms are data-centric, we are

independent of a lot of issues related to trust management and

Sybil attacks. Having shown that pure data-centric detection

can work, we now aim to move forward and integrate trust

as a factor in our framework, which essentially continues the

approach described by Dietzel et al. [6].

An additional factor that should be studied is the impact

of intrusion response. In our work, we have concentrated

completely on detection: we do not change the contents of

the neighbor table, or the information added to it. Thus,

we essentially still record the information transmitted by

the attacker. We could potentially improve our results by

filtering out messages identified as malicious; however, this

induces a significant safety risk in real applications. Future

work could analyze this trade-off in more detail, but such

an analysis requires a cooperative safety application, which

requires significant changes to the way VEINS and SUMO

operate.

V. CONCLUSION

In this paper, we studied several enhancements of the work

by Leinmüller et al. [3] to demonstrate that our framework,

proposed in earlier work [6], can feasibly be supplied with

detection results from multiple detectors. Our evaluations have

shown that the results from Leimüller et al. [3] can be extended

to additional types of attackers, although we have also shown

several weaknesses of their work. However, by converting

their results into our framework with minimal impact on

detection rates, we have the necessary tools to fuse their results
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Fig. 4: True and false positives for different extremes of the fixed modification strategy.

with detection mechanisms from other authors. As discussed,

our approach to convert the results can be applied to other

mechanisms, which we plan to do in future work.

Another important result is that we have shown that it

is possible to focus on data-centric detection, based on the

physical characteristics of VANETs and the semantics of the

messages transmitted in these networks. This differentiates our

results from earlier work, which has had a strong focus on

establishing trust in nodes, rather than in the data directly [5],

[3]. In this respect, we aim to combine the node-centric

fusion mechanisms developed by these and other authors into

our framework. However, this is significantly simpler to do,

because these authors already use approaches like Dempster-

Shafer theory to represent this trust; subjective logic can

directly include these. This trust can then be combined with

our results through trust transitivity and consensus, as we have

previously proposed in earlier work [6]. Our future work will

focus on proving that this approach is feasible, and provides

better detection results.
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