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Abstract— The integrity of messages in vehicular ad-hoc
networks has been extensively studied by the research com-
munity, resulting in the IEEE 1609.2 standard, which provides
typical integrity guarantees. However, the correctness of message
contents is still one of the main challenges of applying dependable
and secure vehicular ad-hoc networks. One important use case
is the validity of position information contained in messages:
position verification mechanisms have been proposed in the
literature to provide this functionality. A more general approach
to validate such information is by applying misbehavior detection
mechanisms. In this paper, we consider misbehavior detection
by enhancing two position verification mechanisms and fusing
their results in a generalized framework using subjective logic.
We conduct extensive simulations using VEINS to study the
impact of traffic density, as well as several types of attackers and
fractions of attackers on our mechanisms. The obtained results
show the proposed framework can validate position information
as effectively as existing approaches in the literature, without
tailoring the framework specifically for this use case.

I. INTRODUCTION

Vehicular Ad-hoc Networks (VANETS) are ephemeral net-
works in which vehicles exchange information to provide
additional services. They are distinguished from other types
of ad-hoc networks by their high node mobility and reliance
on message contents, particularly position information. A
significant amount of research effort has been invested in stan-
dardizing these networks. Furthermore, vehicle manufacturers
are in the final stages of deploying initial commercial appli-
cations. One important focus of standardization beyond these
applications has been security, particularly message integrity.
Cryptographic message integrity for VANETS is specified in
IEEE 1609.2 [1] which includes a typical solution based on
Public Key Infrastructures (PKIs). Although researchers have
criticised the standard in various aspects, the overall goal of
verifying message integrity can be considered achieved.

However, standardization of message integrity lacks a key
aspect relevant to security: cryptographic mechanisms cannot
guarantee the correctness of data within a signed payload.
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Message correctness is important both from a security perspec-
tive and for application functionality. In this paper, we focus
on position information, which is important in VANETSs from
many network layer’s perspectives [2]]. Geographic routing,
traffic management, safety applications, and data aggregation
are all dependent on position information [2]], [3].

Previous authors have studied data correctness in VANETS.
The authors of [3l], concentrated specifically on position
information while the authors of [3], [6] have taken the
more general approach of misbehavior detection. Misbehav-
ior detection can be categorized as data-centric and node-
centric [[1]. Data-centric mechanisms verify the information
in packets directly (e.g., by cross-checking with sensors or
between messages), while node-centric mechanisms rely on
some types of trust (e.g., good behavior of particular neighbors
over time).

In this paper, we use position information as an example
of how misbehavior detection can be improved by subjective
logic [8]]. In particular, we enhance two mechanisms proposed
in a previous work [3]], Acceptance Range Threshold (ART)
and Pro-Active Neighbor Exchange. We also show how these
mechanisms can be integrated into a general framework which
we have previously proposed in [6]. We conduct simula-
tions using VEINS which uses both OMNeT++ to simulate
a VANET and SUMO to simulate the movements of the
vehicles of the VANET. The obtained results show that the
proposed work validates position information better than when
applying ART or Pro-Active Neighbor Exchange alone. In our
simulations, we study the impact of different parameters for
the mechanisms, traffic density, types of attackers and fractions
of attackers on misbehavior detection.

The remainder of this paper is organized as follows. In Sec-
tion[[Il we describe the existing approaches in the literature and
discuss how our work is distinct. In Section [II, we describe
our enhancements and discuss the adopted framework. One
important contribution of this work is the simulative evaluation
which is described in Section [Vl Finally, we conclude our
paper in Section [V]

II. RELATED WORK

As discussed in the previous section, related work can be
organized in two groups: concrete detection mechanisms and


osama@psut.edu.jo
http://dx.doi.org/10.1109/VTCFall.2016.7881000

frameworks that combine information from different sources.
This section discusses both categories in more detail, and
briefly introduces subjective logic, a logic framework that
our work uses to combine the output of multiple detection
mechanisms.

A. Position Verification Mechanisms

Leinmiiller et al. [3] proposed a number of different position
verification detectors. This variety was in part the inspiration
for our work, where one important contribution is the ability
to incorporate different information sources. We now describe
one of their mechanisms in detail, which we aim to improve:
the Acceptance Range Threshold (ART). This mechanism
essentially relies on the fact that transmission range is limited.
Therefore, if attackers manipulate their position to be at some
distance away from their actual position, some vehicles will
receive messages with position information outside of their
reception range. In their work, the authors assume a fixed
reception range of 250 meters, and their attacker is stationary.
In our work, we propose to improve their work by estimating
the reception range with more accuracy, and by adapting
the mechanisms’ output from a binary value (legitimate or
falsified) to a subjective logic opinion (see Section [I=C)). This
opinion can then be fused with other detection results.

Another approach to position verification is the pro-active
exchange of neighbor tables [3]]. This mechanism works by
piggy-backing a list of known neighbors to each beacon. Each
node uses this information to construct a neighbor table, which
stores information from direct neighbors (i.e., those from
which beacons were received), in particular the last known
position and list of neighbors. When a new beacon message
is received, its’ position is compared to all direct neighbors; if
the distance between the received message and the neighbor is
below a threshold, this means the sender of the new message
must be in that neighbor’s list of neighbors. The mechanism
verifies whether this is the case, and marks new beacons as
suspicious when they are missing from a number of tables.
This mechanism is an example of a cooperative detection
mechanism, as it relies on the exchange of these neighbor
tables. Because the mechanism considers information from
multiple positions, given enough honest nearby vehicles, the
mechanism should perform better. However, this mechanism
also has a high false positive rate, because lost messages,
neighbor mobility and delays may lead to the two-hop neigh-
bor table to be out of date. In our work, we enhance the output
of this detector by configuring uncertainty based on the amount
of neighbors, which increases the weight of this mechanism
as more information is available.

B. Frameworks

In addition to mechanisms designed to detect false positions,
the literature provides various frameworks to fuse information
from different sources.

Raya et al. [5] have described a framework to combine
various data-centric detection mechanisms. However, unlike

our approach, their main focus is computing node trustwor-
thiness, which is then used to evaluate the actual belief in
the received message. This approach is fundamentally based
on trust evaluation, which can be done using different logic
frameworks, such as Dempster-Shafer theory or Bayesian
inference. One of their results is that when uncertainty is
high, Dempster-Shafer theory performs well; we use subjective
logic in our work, which is an improvement over Dempster-
Shafer theory [8]]. We also go beyond their work conceptually,
building on earlier work by Dietzel et al. [6], and represent
detection results in the logic framework, rather than just trust
between nodes. This makes our work more flexible: it can
conceptually represent aggregated information and can be
tuned depending on network parameters, as discussed in earlier
work [9].

Stiibing et al. have proposed a different approach;
rather than developing a generic framework for misbehavior
detection, they have developed a framework to combine several
information sources that are all concerned with correctness
of position and movement information. Specifically, their ap-
proach combines several autonomous data-centric mechanisms
(path prediction and maneuver recognition), which allow them
to accurately predict the movement of neighboring vehicles.
However, their work has two main disadvantages: it cannot
detect certain types of attacks (e.g., when the attacker consis-
tently falsifies her position by a fixed vector), and it cannot
be extended or combined to work with other detectors without
further work. In our framework, it is possible to integrate their
detection results, and the concrete detectors we improve in
this paper can detect exactly the attack that the framework by
Stiibing et al. [4] cannot.

C. Subjective Logic

Subjective logic is a framework for probabilistic infor-
mation fusion, which is capable of representing not just a
probabilistic truth value, but also a measure of uncertainty.
It is similar to the more well-known Dempster-Shafer Theory,
with the advantage that it integrates uncertainty directly, rather
than adding it as a separate component. This has the advantage
that fusion becomes easier. Subjective logic expresses the
truth value of a statement through so-called opinions w =
(b,d,u,a), which consist of a belief, disbelief, uncertainty
and base rate. An intuitive interpretation is that belief is the
probability that the statement is true, disbelief is the probabil-
ity that it is false, and uncertainty represents the confidence
in this evaluation. The base rate expresses the probability in
the absence of evidence, which in this paper is assumed to
be 1/2. An opinion can be converted into a prediction by
computing the expectation, £ = b+ w-a. Opinions are usually
held by subjects about objects: for example, several detection
mechanisms (subjects) can have different opinions about an
object (a new packet). Subjective logic provides operators to
fuse the opinions of these detectors with certain constraints.

In our earlier work, we have proposed the combination
of different mechanism outputs using subjective logic [6]],
and shown that this approach can be applied not just to



simple beacon messages, but to other use cases, such as
aggregation [9]]. One important feature for any such framework
is that existing work can be included into the framework,
without requiring extensive modification to that work. In
this paper, we address exactly this challenge, demonstrating
how earlier work by Leinmiiller et al. [3] can be enhanced
by making small modifications and fusing the results with
subjective logic operators. To achieve this, one important step
is to convert the output of detectors to an opinion in a way that
preserves as much information as possible. One could imagine
outputting dogmatic opinions that reflect the binary output
of some detectors, but this will not provide a meaningful
improvement of detection results (at best, both agree and the
result is the same; if there is a conflict, the result will be 50-50,
and thus not support a decision). Therefore, this paper shows
that meaningful improvement can be achieved with limited
changes to the internal workings of the detectors. The opinions
created by this process can then be fused in a more useful way.
In future work we aim to do exactly that, addressing the ideas
proposed in [6]], including enhancements such as node-centric
detection and proposals to adapt the opinion based on specific
traffic situations [[10] or attacker probabilities [9].

III. MISBEHAVIOR DETECTION MECHANISMS
A. Enhanced ART Detector

A main disadvantage of the ART detector developed by
Leinmiiller et al. [3] is that it can only detect attackers that
are in a specific area — those transmitting a location that
is outside of the transmission range of a receiver, while
that receiver can still receive the message. The detector will
inevitably suffer from false negatives — those cases where
the attacker is in range, and transmits a false position within
the transmission range of the receiver. However, there is
also a significant degree of false positives related to actual
transmission range. This degree of false positives comes from
the fact that transmission range is not fixed, but rather changes
depending on properties of the channel and obstacles in the
vicinity. In order to resolve these weaknesses of the detector,
fusion with other data sources is advisable. To enable this
fusion, we need to convert the detection result of the ART
detector into an opinion.

The idea behind the ART detector essentially assumes a unit
disc graph model for the transmission range, which cannot be
considered realistic even in free space environments. Thus, we
propose that the opinion, which we need for fusion anyway,
better represents the actual transmission range. We should
thus select a high belief for nearby positions, high disbelief
for positions far out of our transmission range, and high
uncertainty for positions around the edge of our transmission
range. To implement this, we chose a Gaussian distribution for
the uncertainty u, with a mean of the expected transmission
range (i.e., the ART) and a configurable standard deviation o
that should reflect the overall uncertainty about the potential
transmission range. We normalize the uncertainty s.t. uw = 1 if
the measured § equals the threshold 6 and choose the certainty
to be 1—u, reflecting that we have evidence for the message to

be trustworthy. The certainty is assigned to belief when 6 < 6
and to disbelief when & > 6. This opinion can now be fused
with, e.g., an opinion about the sender or other data-centric
sources.

Notice that the approach presented here can easily be
generalized to other variables for which the receiver can
compute an independent estimate that can be compared with
the message contents. In particular, for any estimated value §,
mean @ and variance o2, we can compute:

_15-0)? _15-0)? .
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w= _15=02  _ls—02
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Indeed, this was the generic approach we imagined at the
start of this work. It is technically possible to substitute more
reliable estimates of the actual transmission range in this
equation. However, actually evaluating these estimates cannot
be done through simulation: the most accurate estimates of the
transmission range are a combination of physical layer models,
which are those used to create the simulation. Therefore,
we opted instead to show that this generalized approach is
feasible.

B. Pro-Active Neighbor Exchange

As noted by the original authors [3]], the pro-active exchange
of neighbor tables suffers from high false positives. In order
to improve the overall detection accuracy of the system, we
improve this detector’s output for increased flexibility. As
in the enhanced ART detector, we mapped the output to
subjective logic opinions, which represent the degree of belief,
disbelief, and uncertainty. In particular, the output contains
an uncertainty that is inversely proportional to the amount of
available information.

Upon receiving a new beacon, the receiver computes the
distance from the new position information to each neighbor
and decide whether the sender of that beacon should be in
the neighbors’ neighbor table or not. Instead of making the
decision at this point, as in the original detector approach,
the receiver constructs two observations; sender is benign
and sender is not benign. These correspond to whether the
prediction is confirmed — for example, if the sender should
appear in a neighbor’s neighbor table and it appears, then
this is considered as an occurrence of the sender is benign
observation. We then compute an opinion as follows:

ﬂ oz n_ﬂ _z =z
w=|—e"10, e 10, ¢ 10
n n

Where 3 is the amount of benign samples, and n is the total
amount of samples.

Based on this detector, if the receiver does not have any
neighbor, he will be totally uncertain about the newly received
position information if it is correct or not. The more neighbors,
the more certainty in the detector’s decision.




1.0 1.0 1.0
] ¢ ¢ ART Qo Exchange 1] ¢ ¢ ART
208 $ ¢ eART 808 I T Merged 508 ¢ ¢ eART
206} 206 206 I T Merged
= . = =
w w [
S04 . S04 0.4
& ° 2 b
502 . 502/ . i ) . R R R

0.0, 2 0.0l 0.0

200 250 300 350 400 450 500 200 250 300 350 400 450 500 50 100 150 200 250 300
Threshold Exchange Threshold Variance
(a) False positives (b) False positives (c) False positives

1.0 1.0 1.0
o ° o o o
0.8 . 0.8 0.8
-4 . -4 . o4 1 £ N
206 H 206 : - : Coels : * oz oz | s i e
= H = = ° ° ¢ e °
w 0 n
S 0.4 H DC_> 0.4 ncf 0.4 § ¢ ART
“é 0.2 ¢ ¢ ART g 0.2 Exchange g 0.2 ¢ ¢ eART

¢ ¢ eART I 1 Merged {1 1 Merged
0'0200 250 300 350 400 450 500 0'0200 250 300 350 400 450 500 0.0 50 100 150 200 250 300
Threshold Exchange Threshold Variance

(d) True positives

(e) True positives

(f) True positives

Fig. 1: Comparing different thresholds and variances to configure our enhanced detectors.

C. Fusion Approach

In this work, we aim to demonstrate the advantages of
fusion, and do not discuss how node-centric approaches can be
incorporated into our framework (we refer interested readers to
our earlier work [[6] for more details). Therefore, we elected to
use the consensus operator to combine two different opinions
about a single beacon message, emphasizing that even this
relatively simple fusion operation has potential benefits for
detection accuracy, when compared to the individual mecha-
nisms. The consensus operator, also called cumulative fusion
operator, for two opinions about the same event is defined as:

ba-up +bp-uasa da-up+dpg-ua ug-ua
k ’ k ok )
where k = uyq +up —uy - up.

For future work, we are analyzing the potential of other
operators for a more precise result. In our current implemen-
tation of the neighbor exchange, we essentially implement a
conservative approach — we assume that which was received
previously is accurate. As related work has already shown, it
is better to consider the age of information, as well as its’
source, rather than just assume that new information will fit
with existing information. However, this essentially represents
a node-centric approach to detection, which we considered out
of scope for this work — our aim is to show that even a fusion
of data-centric mechanisms alone improves detection results.

waBwp = (

IV. EXPERIMENTAL EVALUATION
A. Methodology
We use the Veins framework for simulating VANETS,

which uses the OMNeT+ discrete event simulator to simu-

Version 4.6

late the network and SUMOH to simulate vehicle movement.
SUMO needs map and load data as input — for this purpose,
we use the recently introduced LuST traffic scenario,
which is based on real traffic data in the city of Luxembourg.
We selected an area in the middle of the Luxembourg map
and started our simulation at three different points in time to
simulate different traffic load (and therefore different channel
loads). We implemented our detectors in an application layer
class that is integrated into the standard VEINS example.
Further simulation parameters are shown in Table [l For all
of the following graphs, we use ART to refer to a fixed
threshold, eART to refer to our enhancement of the ART
mechanism, Exchange to refer to the pro-active neighbor
exchange, and Merged to refer to the fused result. In all
graphs, we compute the false positive and false negative rate of
different mechanisms. The false positive rate is computed by
dividing the amount of detected non-malicious messages by
the total amount of received non-malicious messages, while
the false negative rate is computed by dividing the amount
of attacker messages that were not detected by the amount of
received attacker messages. This distinguishes our work from
that of Leinmiiller et al. [3]], who used a non-standard metric.

B. Parameter configuration

To select the ART threshold, which should approximate
the transmission range, we chose the low density scenario
(2 hours into the simulation), within which we executed
our application on all nodes for 360 seconds with a single
attacker (5 repetitions). We chose an easy to detect attacker
(which adds the vector (300, 300) to her actual position) for
these experiments. This gave us the graphs in Figures [Talldl
showing the false positive and false negative rates over the

2Version 0.25.0
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Fig. 2: True and false positives for low and high density networks against randomized attackers (i.e., transmitting random
positions). Low density is after 2 hours of simulation, high density after 6 hours.

Channel TwoRaylInterference, JakesFading,
LogNormalShadowing

standard VEINS 802.11p

PHY&MAC model

Thermal noise -110dBm
Bit rate 18Mbps
Carrier frequency 5.890 GHz
Transmit power 10mW
Sensitivity -89dBm
Beacon rate 1 Hz

Attacker probability | {0.01,0.1,0.2,0.3}

TABLE I: Simulation parameters — full configuration available
on request

different threshold values. The rates were computed by a
weighted average over the simulations. This should essentially
reproduces the results from Leinmiiller et al. [3]] in a more
realistic simulation setting, with a moving attacker. However,
the false positive and negative ratios in are too high for what
they assumed is the transmission range (250m). Based on these
results, we select 400m as the better choice — trading some
detection accuracy for less false positives.

Next, we were interested in whether a different threshold
for the pro-active neighbor exchange would make sense.
We performed the simulations again, this time varying that
threshold, and arrived at the results shown in Figures
Because the true positive rate drops off at a threshold of
400, we selected the threshold to be 350m. This number also
reflects the typical maximum distance between receiver and
legitimate sender in our simulations. Having set the essential
thresholds of both mechanisms, we looked at the influence
of the variance parameter for our enhanced ART. The results
of this analysis are shown in Figures [Id[fl which shows

that the merged results of the individual mechanisms slightly
outperforms the basic ART in both false positive and true
positive rate. This can be explained by the fact that only
messages with significant uncertainty are influenced by the
pro-active neighbor exchange, which is exactly what we aimed
to achieve.

C. Results & Discussion

The next step in our evaluation was the analysis of the
influence of three further factors: different traffic densities,
different attacker types and different fractions of attackers.
Compared to earlier work, we assume that our attackers are
typical vehicles, i.e., mobile nodes, rather than stationary
attackers. We formulate several attack strategies:

« a fixed modification (as above) where a specific vector is

added to the nodes’ current position

« arandomized modification, where a random position from

the actively simulated area is chosen

o a randomized vector modification, where a random posi-

tion in a square around the attacker is selected
To vary the traffic density, we selected three sections of the
LuST scenario; the situation after 2, 4 and 6 hours in the
area between the SUMO coordinates (2300, 2300) and (6300,
6300). Because each run uses a different random seed, the
individual runs have different densities — the densities in Table
[ are approximate. The attacker probability in Table [Il is the
probability that any vehicle added to the simulation is an
attacker, which attacks with the selected strategy. Because of
the same random seed effect, the graphs in this section contain
the actual fraction of attackers on the X axis, and each point
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Fig. 3: True and false positives for different extremes of the randomized modification strategy.

represents exactly one simulation run. In the interest of space,
we present the most interesting results of our analysis herd.

Figure [2] shows results for the random attacker strategy,
which shows the first surprising result: both our fusion and
our implementation of the ART detector are nearly invariant
to node density, which contradicts with the result in Figure
8b of the work by Leinmiiller et al. [3]. We suspect the cause
of this difference is the way in which they generate density
differences; in our approach, the simulated area is fixed, but
the amount of nodes increases, while in their case, the density
is reduced by increasing the network size. Second, we observe
that our detection approach is quite invariant to the fraction of
nodes which is an attacker. However, this result is expected,
because both of the detectors we have implemented are data-
centric mechanisms, one of which is completely autonomous.
Also, our attackers do not have a collaborative strategy: one
could imagine an attack strategy in which multiple attackers
transmit false positions, leading to biased results from the pro-
active neighbor exchange.

A second notable feature of our results is the relatively
low true positive rate for some situations, particularly those
where the attacker’s strategy is a relatively small modification
of his own position, as shown in Figures @ and 3 As discussed
previously, there are some attackers which cannot be detected
by looking only at the transmission range, e.g., attackers
that introduce a minimal change in their location. We have
chosen not to modify our metric for this case, because it
is difficult to find a reasonable definition of arrack if we
want to exclude these cases. In particular, our metric also
considers correct messages (i.e., messages where the claimed

3Code and other results available per request.

and actual positions of the attacker are the same) as messages
that should be detected. This weakness also exists in the work
of Leinmiiller et al. [3]], as can be observed in Figure 8a of
their paper. This leads to a very low true positive rate for
attackers that make small modifications to their position. In
this paper, the main result is that merging information from
different sources leads to a reasonable result in all cases. In
future work we plan to show that these attacks can be detected
by integrating additional mechanisms into our framework.

With these results, we have shown that fusion is feasible
for this use case even if we disregard message history and
node trust. Because our mechanisms are data-centric, we are
independent of a lot of issues related to trust management and
Sybil attacks. Having shown that pure data-centric detection
can work, we now aim to move forward and integrate trust
as a factor in our framework, which essentially continues the
approach described by Dietzel et al. [6].

An additional factor that should be studied is the impact
of intrusion response. In our work, we have concentrated
completely on detection: we do not change the contents of
the neighbor table, or the information added to it. Thus,
we essentially still record the information transmitted by
the attacker. We could potentially improve our results by
filtering out messages identified as malicious; however, this
induces a significant safety risk in real applications. Future
work could analyze this trade-off in more detail, but such
an analysis requires a cooperative safety application, which
requires significant changes to the way VEINS and SUMO
operate.
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Fig. 4: True and false positives for different extremes of the fixed modification strategy.

V. CONCLUSION

In this paper, we studied several enhancements of the work
by Leinmiiller et al. to demonstrate that our framework,
proposed in earlier work [6], can feasibly be supplied with
detection results from multiple detectors. Our evaluations have
shown that the results from Leimiiller et al. [3]] can be extended
to additional types of attackers, although we have also shown
several weaknesses of their work. However, by converting
their results into our framework with minimal impact on
detection rates, we have the necessary tools to fuse their results
with detection mechanisms from other authors. As discussed,
our approach to convert the results can be applied to other
mechanisms, which we plan to do in future work.

Another important result is that we have shown that it
is possible to focus on data-centric detection, based on the
physical characteristics of VANETSs and the semantics of the
messages transmitted in these networks. This differentiates our
results from earlier work, which has had a strong focus on
establishing trust in nodes, rather than in the data directly [3],
[3]. In this respect, we aim to combine the node-centric
fusion mechanisms developed by these and other authors into
our framework. However, this is significantly simpler to do,
because these authors already use approaches like Dempster-
Shafer theory to represent this trust; subjective logic can
directly include these. This trust can then be combined with
our results through trust transitivity and consensus, as we have
previously proposed in earlier work [6]. Our future work will
focus on proving that this approach is feasible, and provides
better detection results.
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