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Abstract—Driving behavior is a major factor in traffic safety
applications. Abnormal behavior, such as extremely aggressive or
passive driving, can endanger both the driver and other traffic
participants. Most driving behavior analysis approaches to date
rely on classification, which requires labeled data for both normal
driving and various types of anomalous behavior. We propose
an approach that detects anomalous driving patterns based on
outlier detection, which does not require such data. Apart from
the required data set, existing approaches have difficulties dealing
with changing behavior that overlaps with normal behavior (e.g.,
aggressive drivers still stop in traffic jams). We introduce a post-
processing step that significantly improves results in this regard.
The approach is evaluated using simulations based on the realistic
LuST traffic scenario, and shows reliable detection of anomalous
vehicles with low false positive rates.

I. INTRODUCTION

Safety of humans is a critical goal, especially in the au-
tomotive context. Many techniques have been developed in
order to enhance and maintain individuals’ safety. One of the
most recent developments ones is vehicular communication,
that allows vehicles to exchange information both among each
other in form of vehicle-to-vehicle (V2V), as well as between
the vehicles and a backend infrastructure in form of vehicle-to-
infrastructure (V2I) communication. In addition to enhancing
safety, vehicular communication has been developed aiming
for better traffic management and efficiency. Essential for these
applications are Cooperative Awareness Messages (CAMs),
which are broadcast messages in which each vehicle com-
municates its current status, including speed, acceleration,
heading, and location information. CAMs enable numerous
safety applications, such as collision avoidance and hidden
intersection warnings.

In this paper, we introduce a mechanism that utilizes the
data contained in CAMs to detect anomalous driving behavior
that has the potential to risk other road users, including,
e.g., other drivers and passengers, pedestrians, and cyclists.
The anomalous behavior we aim to detect ranges from an
unusually slow vehicle on a highway to an aggressively driving
vehicle that, e.g., frequently changes its lane, often exhibits
sudden speed and acceleration changes, or maintains unusually

ICopyright IEEE. This is an author version. Published version on IEEE
Xplore: https://doi.org/10.1109/VTCSpring.2018.8417777.

small distances to other vehicles. We argue that any of these
anomalies can pose a significant safety risk to road users, and
thus our goal is to detect any deviation from normal behavior,
rather than classifying the behavior itself. Therefore, we focus
on the anomaly detection phase in this paper, and leave the
post-detection phase—i.e., notifying the road users—to be
addressed in future research.

Specifically, our contribution consists of three parts. First,
we provide a comparison of different machine learning tech-
niques for the application of anomalous driving behavior
detection. Second, to provide a suitable analysis, we also
evaluate the relevance of individual features, i.e., what data
is taken as input for the machine learning algorithms. Finally,
we introduce a methodology on how to generate a suitable and
sufficiently large simulated data set, based on the widely-used
LuST scenario [1] that is considered to be realistic normal
behavior.

The machine learning techniques we discuss can be applied
to issue warnings of anomalous behavior, and can do so either
in a completely distributed fashion (V2V), or in a partially
centralized fashion (V2I/I2V). The warnings themselves have
numerous applications, and can be used not only for regular
drivers, but also for autonomous driving applications. Specif-
ically, the fact that some vehicles drive aggressively can be
used to fine-tune prediction algorithms, further increasing their
reliability.

Our approach is a machine learning-based anomaly detec-
tion mechanism that utilizes CAMs in vehicular networks in
order to detect anomalous and aggressive-like driving behavior
to enhance safety. In our analysis, we included three state-
of-the-art unsupervised and semi-supervised machine learning
algorithms:

1) k-Nearest Neighbors (k-NN) [2]]

2) One-class Support Vector Machine (SVM) [3]], [4]

3) Isolation Forest (¢Forest) [5]], [6]

Unlike other approaches, using unsupervised and semi-
supervised anomaly detection is not tailored to find only
specific deviations of features (e.g., exceeding the speed limit),
but can distinguish between overall normal and anomalous
behavior, where the latter deviates significantly and thus poses
a threat to traffic safety. Our mechanism is privacy-friendly as
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it works with anonymized data where fingerprinting the driver
is not needed.

In Section we differentiate our work from previous
approaches, such as driver fingerprinting, and further present
the detection mechanisms upon which our system is based.
In Section we discuss the various phases of our scheme
in detail, including data acquisition, preprocessing, outlier de-
tection, and post-processing. We evaluate our architecture and
discuss the implications in Section Finally, we conclude
our work and address future work possibilities in Section [V]

II. RELATED WORK
A. Driver and Vehicle Behavior

Identifying drivers by their vehicular behavior is referred to
as driver fingerprinting and is a prime area of research focus,
such as the work done by Enev et al. [7]], showing that drivers
can be recognized reliably by their driving behavior with only
the sensor data which is readily available via a vehicle’s on-
board-diagnostics (OBD) port. Similarly, Van Ly et al. [3]
used a vehicle’s inertial sensors from the CAN bus to build a
profile of the driver to provide proper feedback to reduce the
number of dangerous car maneuvers. Whereas Saiprasert et
al. [9] proposed an algorithm that focuses on the prospect of
using minimal driving behavior signals in a V2V environment
in order to remotely identify drivers. The algorithm presented
shows that high identification accuracy can be achieved using
limited signals.

The previously mentioned work is concerned with collecting
data from the drivers’ environment, then using some sort
of learned model to classify and identify a specific driver
within a set of known drivers in a supervised manner. Another
area of research aims to classify driving styles, rather than
individual drivers. For example, a rapid pattern recognition
approach to characterize a driver’s behavior, specifically mod-
erate and aggressive driving behavior, is proposed in [10].
Their clustering-based SVM (EMC-SVM) method is capable
of reducing recognition time and improving the recognition of
driving styles.

B. Anomaly Detection

In our work, we expand the scope to consider different
anomaly detection techniques and how each could recognize a
vehicle’s behavior and detect if it is behaving normally or ex-
hibiting abnormal behavior using minimal privacy-preserving
features. Here we briefly describe the techniques included in
our analysis.

Nearest Neighbor (NN) analysis is one of the most common
anomaly detection techniques, and has been invaluable when
it comes to outlier detection. In a k-NN approach, data
points are analyzed with respect to their neighborhood and
an outlier score is assigned accordingly. The main assumption
is, that normal data points exist alongside several closely
related neighbors, whereas outliers tend to situate further away
from other data points. In our evaluation, we are using the
distance-based global k-NN, as implemented by Amer and
Goldstein [2].

A supervised methodology for the one-class SVM, was
proposed by Xu et al. [3]. A suppression mechanism is
achieved by introducing a new variable n which represents an
estimate that a certain point is normal. This variable controls
the portion of slack variables that is going to contribute to the
minimization objective. Thus an outlying point would have an
n set to zero. Ideally, outliers would have small values of n
and would thus have little or no contribution to the decision
boundary. Results showed that the 77 enhancement provided by
Amer et al. [4] for the unsupervised one-class outperformed
the traditional one-class SVM and enhanced robust one-class
SVM. We chose to work with the unsupervised Eta one-class
SVM, due to its novel and promising performance.

Liu et al. [Sl], [6] proposed a new method for anomaly
detection called ¢Forest. In their work they suggest and prove
that anomalies are susceptible to a mechanism called isolation,
which takes advantage of two main characteristics of anoma-
lies: (1) Anomalies are a minority amongst the available data
space; and (2) anomalies exhibit attribute-values that are much
different from normal instances.

Lui et al. implemented this mechanism using a binary tree
structure called Isolation Tree (¢Tree), which can effectively
isolate instances. As a result of the susceptibility of anomalies
towards isolation, outliers tend to be isolated closer towards
the root of the 7Tree. Whereas normal data instances are likely
to be isolated towards the end of it. An 7Forest is essentially
an ensemble of iTrees for a given dataset. The ¢Trees are
randomly generated by adding random splits to the decision
tree, until the instances are successfully isolated, resulting in
a forest of trees where outlier instances have a shorter average
path length.

In contrast to k-NN or SVMs, an ¢Forest is not a distance-
based approach, but rather analyzes each feature indepen-
dently. This overcomes some of the disadvantages of distance-
based detection mechanisms, such as their performance de-
crease for high input dimensions. We chose to work with
iForests due to their robust performance in regard to their
outlier detection capabilities as well as resource requirements.

III. ARCHITECTURE
A. Dataset

Due to the difficulty in obtaining an adequately large data
set with labeled driving behavior, as well as in order to perform
repeatable controlled experiments, we have simulated both
normal and anomalous driving behavior. In the future, we plan
to extend our test to real-world data.

The widely used Simulation of Urban MObility (SUMO)
toolkit enables microscopic traffic simulation, i.e., simulating
traffic at a per-vehicle level. The Luxembourg SUMO Traffic
(LuST) scenario [1]] provides a realistic setting and enables
other authors to reproduce our results. This scenario is based
on the city of Luxembourg and contains almost 300,000
vehicles in a simulated road network with about 2,300 nodes
and 5,900 edges with a total length of 931.12 km. There are
several vehicle classes (such as passenger cars and city buses)
which are being simulated over a period of 24 hours.



TABLE I: Parameters of normal and abnormal vehicle types.

vIype accel  decel minGap  sigma  maxSpeed  speedFactor  speedDev  impatience tau  sub-lane Model
normalQ 2.6 4.5 1.5 0.5 70 - 0.1 - - -

normal 1 3 4.5 1.5 0.5 50 - 0.1 - - -

normal2 2.8 4.5 1.0 0.5 50 - 0.1 - - -

normal3 2.7 45 1.5 0.5 70 - 0.1 - - -

normal4 2.4 4.5 1.5 0.5 30 - 0.1 - - -

normal5 2.3 4.5 2.5 0.5 30 - 0.1 - - -

aggressive( 7 8 0.5 0.1 140 1.2 0.1 - 005 -

aggressivel 8 9 0.5 0.2 110 1.2 0.1 1 0.1  IcPushy

aggressive2 8 9 0.3 0.1 100 1.3 0.1 1 0.01 IcAsserative

aggressive3 9 8 0.2 0.2 105 1.2 0.1 1 0.1  IcAsserative w/ IcPushy
aggressive4 10 9.5 0.7 0.1 130 1.2 0.2 1 —  lcAsserative w/ 1cPushy
aggressives 9.5 10 0.8 0.1 140 1.2 0.1 1 - -

aggressive6 8 10 0.5 0.1 120 1.3 0.1 - - -

In our setup, We consider the different vehicle classes from
the LuST scenario as normal driving behavior, and insert addi-
tional classes with modified parameters to represent aggressive
drivers. The particular modified parameters are acceleration,
deceleration, minimum gap, maximum speed, speed factor,
speed deviation, impatience, and the sub-lane model

The modified vehicles are inserted during peak traffic hours,
in order to maximize interaction with normal vehicles. We
define 7 new vehicle classes with parameters as shown in
Table [l Our modifications are meant to increase the vehicle’s
aggressiveness. Between 8:00 AM and 8:05 AM, 14 of such
vehicles are injected in the simulation, while approximately
70 normal vehicles are considered in comparison.

We collect the data from SUMO’s several output files and
derive features as explained in the following section.

B. Preprocessing

SUMO provides various output information about individual
vehicles as well as the driving environment, such as vehicle
speed, coordinates, acceleration, emissions, speed limits, slope
of the road, occupancy of the current lane, and average speed
of the vehicles on the current lane.

To utilize this data with our selected algorithms, we pre-
process it in normalization and features extraction steps. Nor-
malization is required, as some anomaly detection algorithms
rely on distance metrics [[L1].

To capture behavior changes over time, we employ a sliding
window approach: the window size is 3 time steps of the
SUMO output (3 seconds in our case), within which all
features are aggregated. The window is then moved to the
next time step, resulting in overlapping windows. From each
window, we collect the following features:

o the average speed over the duration of the window,

« speeding, i.e., the ratio of speed to the speed limit of the
current lane of the vehicle,

o the acceleration of the vehicle aggregated and averaged
over the duration of the window,

o the number of lane changes that the vehicle performs,
and

2http:// sumo.dlIr.de/wiki/Definition_of_Vehicles,_Vehicle_Types,_and_
Routes

o the minimum distance to the leading vehicle (minimum
gap).

C. Outlier Detection

We applied and tested three outlier detection algorithms on
the dataset. These were the 7 SVM, the k-NN algorithm and
the iForest, as described in Section [[I}

The SVM and k-NN are distance-based algorithms, i.e., they
work by analyzing the distances between samples in the
feature space. The ¢Forest, on the other hand, goes over
every dimension of the input features separately and generate
random decision trees, that isolate individual samples.

All three methods can give an anomaly score for input
samples after they have been fitted with a dataset. A larger
score corresponds to a more anomalous instance. We use both
the anomaly score and the actual detection of abnormal driving
behavior in our post-processing phase. Note that the scores of
SVM, k-NN and :Forest are not in the same range and are not
directly comparable.

For the SVM, the anomaly score is derived from the
sample’s distance from the learned decision boundary. k-NN
determines the average distance of a sample from its k
nearest neighbors and outputs this as anomaly score. In the
1Forest algorithm, the score is calculated from the average
path length that is required to isolate the respective sample
with the randomly created decision trees. Here, shorter paths
correspond to samples with higher anomaly scores.

D. Post-Processing

For any of the anomaly detection algorithms, a single sam-
ple consists of the aggregated values from a time window as
described earlier in this section. However, these time windows
tend to be quite short (in our case 3 seconds) and thus do
not accurately describe the driving behavior of a vehicle over
time. Yet, even the most conspicuously behaving vehicles are
indistinguishable from normal ones in certain situations —
such as when waiting at a traffic light.

To address this, we do not simply use the anomaly scores
from the anomaly detectors to decide whether a vehicle
behaves abnormally. Instead, we post-process the results by
aggregating them over time. This step allows us to draw a
conclusion about a vehicle over a certain time frame, such as
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(a) Outlier scores of k-NN of exemplary normal vehicles.
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(b) Outlier scores of k-NN of exemplary aggressive vehicles.

Fig. 1: Both aggressive and normal vehicles exhibit spikes with higher outlier scores. However, aggressive vehicles have more

frequent spikes with significantly larger amplitudes.

e.g., 5 minutes. Observing a vehicle’s behavior over a longer
time gives us much better results when judging its irregularity.

Post-processing is performed by taking into account all
anomaly detection results over some time period for each
vehicle. We aggregate these results by taking the maximum,
and compare this against a threshold to decide whether a
vehicle’s behavior is anomalous. In our setting, we chose 5
minutes as a time frame as this gives us sufficient time to
reliably detect outliers, it is still short enough for an actual
warning system to be useful.

While it is sufficient for us to demonstrate that this approach
works, for a deployed system, we would suggest a weighted
average that decays over time, since a vehicle that currently
behaves anomalously, may very well go back to normal.
This also allows to distinguish the intensity of the anomalous
behavior by using several thresholds.

IV. EVALUATION AND DISCUSSION

In this section, we discuss the usage of different features
and their impact on detection performance. We also motivate
how our post-processing phase improves detection results
significantly.

A. Feature Combinations

Out of a wide set of available features, i.e., acceleration,
speeding, lane changes, speed, and minimal gap, one might
think that combining these features altogether will enhance
and, hence, deliver the best detection performance. Our eval-
uation has shown that this is not the case, especially when we
consider the distance-based detection algorithms; SVM and
k-NN. distance-based algorithms generally have worse results
with higher input dimensions, because details are lost due
to irrelevant features. Hence, SVM and k-NN do not adapt
well to many input dimensions. Furthermore, we find out that
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Fig. 2: Receiver operating characteristics for all algorithms
without and with post-processing.

the combination of acceleration and speeding forms the most
promising combination regards SVM and k-NN.

B. Changing Vehicle Behavior

As stated earlier, vehicle’s behavior can change significantly
over time. Drivers who generally exhibit normal behavior can
sometimes have short periods of time during which they be-
have relatively aggressive, or passive. Conversely, abnormally
behaving vehicles can seem quite normal for a relatively long
time e.g., when they are waiting at traffic lights, or traveling
on light-traffic roads.

This can be observed by examining how the outlier detection
results develop over time, as shown in Fig. [I] Our post-
processing takes this into account by averaging the scores over
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a S5-minute time frame, thus allowing for sufficient time to
detect vehicles that exhibit abnormal behavior more often.

C. Prediction Performance

To evaluate the performance, we employ the Receiver
Operating Characteristic (ROC), which relates the results’ true
positive rate against its false positive rate. On the one hand, we
require a high true positive rate, as otherwise our system would
not detect abnormal vehicles that pose possible threats to traffic
safety. On the other hand, the false positive rate should be
very low, because false warnings would unnecessarily disturb
traffic, or have the effect that the receivers of the warnings
pay less attention to them if these are frequently wrong. We
show, in Fig. [2] that achieving high detection rates with a
low number of false positives is possible by choosing an
appropriate threshold, and perform a proper post-processing
step which has the effect of increasing the overall accuracy
dramatically for both the k-NN and 7Forest results. The SVM
did not perform to a satisfying degree.

Relying on ROC only for evaluation purposes might be
misleading, specially when having classes of different sample
sizes. Thus, we also show the precision against the recall plot
in Fig. [3] The precision denotes the rate of true positives from
all samples that have been flagged as abnormal (true positives
& false positives), hence providing a notion of how many
of the flagged vehicles are flagged correctly. Moreover, recall
considers the true positives from all actual outliers, and gives
us an idea on how many abnormal vehicles were missed.

Generally, having a high precision as well as a high recall
indicates the best performance of such an anomaly detection
system. Fig. 3| shows that we achieve this especially with
the combination of using the k-NN detector and our post-

processing. However, the tradeoff between the two values has
to be considered. We suggest aiming for a higher precision,

as false positives may have considerable negative effects, as
explained earlier.

V. CONCLUSION

In this paper, we presented our results of detecting anoma-
lous driving behavior by using common outlier detection
mechanisms and post-processing the results with an averaging
step.

In the future, we would like to extend our research to not
only simulated data, but real-world driving behavior datasets.
Furthermore, our goal is to apply and evaluate additional
detection mechanisms, such as outlier detection with neural
networks.

We tested k-Nearest Neighbors (k-NN), Support Vector
Machine (SVM) and Isolation Forest (¢Forest). While the
SVM did not produce usable results, both k-NN and ¢Forest
performed very well with high detection rates at low false
positive rates. Specifically k-NN with our post-processing
proved highly reliable in detecting abnormal vehicles.
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