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Abstract—The literature proposes a large variety of differ-
ent misbehavior detection mechanisms for vehicular networks,
which are designed to separate attacks and faulty data from
legitimate data. Most of these mechanisms are evaluated using
techniques adopted from the field of intrusion detection. However,
because misbehavior detection is content-oriented, and includes
the detection of faulty data, it is possible that such data may
be indistinguishable from an attack. This paper discusses and
critically reflects upon different evaluation strategies used in the
literature, and provides some recommendations for authors.

I. INTRODUCTION

Vehicular networks are one area where misbehavior detec-
tion provides a significant benefit, because integrity is more
important than confidentiality, and the data correctness plays
a much more significant role than for regular networks. The
literature has already developed many schemes, which are
evaluated in widely different ways and with very different
tools. Some are analytical, some are simulative and sometimes
there are limited experimental cases.

Similarly, the data that is verified is normally application-
specific, and not independent of surrounding vehicles (i.e., a
ground truth cannot be established for just the particular mes-
sage content that is being evaluated), which makes analytical
approaches very difficult. Additionally, analytical approaches
often require simplifications that could again be exploited by
an attacker. Experimental approaches have different issues;
experiments are expensive to perform, and cannot necessarily
be applied to all settings, especially when the consequences
are dangerous (e.g., attempting to trigger a crash on a highway
for experimentation is not ethically or financially feasible).
Nevertheless, experimental approaches can still provide some
benefit in estimating the behavior of a system in an attacker-
free environment, and the resulting data set can be artificially
extended with attacks [1].

Work on Intrusion Detection System (IDS) validation has
already seen that it is difficult to compare results between
IDSs, but this is made harder by the fact that Misbehavior
Detection Systems (MDSs) are much more varied, and often
designed to work with data. Many other questions play a role:
should detection happen on a per-packet basis or a per-node
basis? Is the goal to eventually detect all attackers, or to detect
the most attackers with the lowest latency? What kind of
attacks are considered? Is there application logic that tries to
be fault tolerant?

The evaluation of misbehavior detection mechanisms is
often strongly influenced by what kind of attacks the authors
were considering. This makes comparisons across published
results very difficult. There seem to be no satisfactory evalu-
ation metrics in the literature that both catch the subtleties of
misbehavior detection, while still remaining general enough to
be applicable to more than just a specific mechanism.

In this paper, we aim to give an overview of the most
common evaluation techniques and metrics, and discuss their
suitability for evaluating misbehavior detection. The contribu-
tion is two-fold; the paper can be used as reference material,
but we also aim to provide a common ground that authors can
use to compare their work to that of other authors.

II. EVALUATION STRATEGY

In this paper, we limit ourselves to simulated evaluation
strategies. These strategies enable reliable and reproducible
experiments in a variety of settings, and enable analysis of
detector performance on a large scale. Although there has been
work on empirical analysis of attacks [1], such studies are ex-
tremely difficult to generalize and verify without a significant
deployment of vehicular communication systems, which are
still in their deployment phases at the time of writing. There
is a wide variety of network and vehicle behavior simulation
tools, with different scenarios; however, these are not the
primary topic of this paper. For more information on this topic,
refer to studies that compare simulation environments [2], [3].

However, what is important to consider for this paper
is the significant variables that could have an impact on
overall detection performance, and which should be analyzed
individually to make general statements about the suitability
of a detection mechanism. The most significant parameters
here include the amount of attackers, the amount of legitimate
vehicles and the driving scenario. By studying these parame-
ters, authors can gain an insight into whether their detector has
weaknesses in specific scenarios, and how it performs when
significant message loss is encountered, and these are often
also used in the evaluation of vehicular applications. In all
cases, repetitions under different simulation seeds are used
whenever probabilistic models of, e.g., the communication
channel are considered. The amount of attackers is a first step
to determine whether the detector is resilient against attacks.



Resilience against attack is a metric that is difficult to
quantify, however; it is particularly challenging to consider
sufficiently distinct attacks, and to implement these attacks
correctly. Because detectors are often designed to detect spe-
cific attacks, it is tempting to implement exactly these attacks
and then show that the detector performs well. Therefore, it
is important to clearly specify the attacker model, including
how exactly this attack works, and whether or not attackers
can cooperate (collaborative attackers) and whether or not
attackers can create a limited amount of additional identities
(Sybil attackers). In the latter case, the attacker uses different
pseudonymous identities that are possibly linkable by an
authority; in the former case, multiple independent vehicles
are attacker-controlled (e.g., this could be due to malware).

Having considered the evaluation strategies, authors should
next consider what an appropriate metric for validation is.
Most mechanisms will perform well in some metrics, and
worse in others; it is therefore important to clearly state what
the evaluation metric is. For comparative studies, this means
that different metrics need to be considered, requiring an
evaluation strategy that is as independent from the evaluated
mechanisms as possible.

III. EVALUATION METRICS

Almost all papers discussing detectors evaluate these
through some measure of detection quality. However, there
are many different strategies and nuances to this process, e.g.,
how it is computed and how it is aggregated over different
messages and vehicles. In addition to detection quality, some
alternative metrics exist, e.g., how long it takes for an attacker
to be detected, or the message overhead (if any); we discuss
these metrics separately.

A. Confusion Matrix

The most obvious approach to evaluate the quality of a
detector’s results is to use the confusion matrix, which is also
used in other fields (e.g., medicine and machine learning).
This matrix describes various combinations of false positives,
false negatives, true positives and true negatives and their rates
with respect to the entire population. This includes metrics like
accuracy, which is the amount of correctly classified events
divided by the total population, and false omission rate, which
is the amount of false negatives in the set of all negatives. Most
papers in the area of misbehavior detection that use this type of
metric use the false negative rate to quantify the risk of missing
detections, and the false positive rate as the risk of an incorrect
detection event. Opinions differ widely on what acceptable
values are (e.g., for intrusion detection in networks with a lot
of traffic, a false positive rate over 0.001 is considered very
bad), and it is difficult to make general statements about this,
because the impact of a false detection event is significant.

However, it is actually not trivial to classify a detectors’
results into these categories when evaluating the detector
in a simulation. Notably, in distributed detection scenarios
such as vehicular networks, proximity to the attacker plays
a significant role in how likely a vehicle is able to detect an

attack. Not all nodes in the network will hear all messages,
so if the data is aggregated across different detectors, one
must take care to normalize these results: instances of a
detector do not necessarily produce the same output for a
given message, and not every message is seen equally often.
Simple normalization may not be sufficient here: if a specific
subset of receivers produces very high false negatives, while
the aggregate of all receivers on average performs very well,
this could still mean the detector is bad. In other words,
aggregating and normalizing over an entire simulation may
hide the fact that there is a weakness in a specific scenario.

Having established a way to normalize and aggregate the
detection results still leaves other questions open. The defini-
tion of the input of the detector is one of these factors: does the
detector take a single message and output a classification, or
does it take a stream of messages and output an eventual clas-
sification? In the latter setting, one needs additional metrics to
establish the timeliness of the system (e.g., detection latency:
how long does it take for a detector to correctly classify an
attack, after this attack starts?).

For a data-centric setting, using the confusion matrix is
particularly difficult, because of the fact that many attacks
are impossible to distinguish from legitimate messages. This
can happen in two cases: either the message was sent by an
attacker, but follows the expected behavior of vehicles (i.e.,
it is not a malicious message), or the attack is so marginal
that it has no impact (and is thus indistinguishable from
expected behavior or sensor noise). For example, an attacker
might transmit a beacon with a position a few centimeters
from its’ actual position. This led some authors to conclude
that application-oriented evaluations may be more suitable:
if the attacker cannot achieve a goal, because the impact of
false data is too small, then clearly the detection mechanism
is effective. The disadvantage of this strategy is that the
evaluation depends not only on the simulation aspects and
the attackers’ implementation, but also on the application
implementation.

For data-centric detection mechanisms that are based on
consistency, i.e., they consider multiple data sources and detect
inconsistencies, it is often implicitly assumed that previously
received data is true, and only the incoming packet is classified
as legitimate or malicious. However, this means that message
order is particularly significant: whenever a malicious mes-
sage arrives first, it may trigger an additional false positive,
because the next legitimate message differs from the malicious
message.

Many papers implicitly discuss that detectors should also
perform revocation or response — they exclude specific mes-
sages from those that are received, in order to prevent errors
in the application. Similarly, some detection algorithms are
inherently incompatible with the idea of evaluating individual
message on a sequential basis, because they perform some
batch processing (e.g., classifying vehicles instead of mes-
sages [4]).

Some authors use a pre-classified set of messages, which
is not necessarily data-centric (e.g., Grover et al. [4] use



a set of 3101 legitimate and 1427 malicious samples, with
several types of attacks). This is common in the field of
machine learning, where classifiers are often tested using this
type of approach. However, since most detection algorithms
in VANETs have different inputs, it is difficult to find a
conclusive set that considers these various inputs, as well as
contain the necessarily distinct types of attacks (especially
when reputation is considered, which can be built over time).
In other words, this approach is only valid if each sample is
well-defined, which is not the case in our more general setting.

B. Alternative Accuracy Metrics

This led authors to use application-specific or detector-
specific evaluation strategies, in order to demonstrate specific
strengths of individual detectors in comparison to others from
the literature.

a) Application behavior metrics: in many VANET sce-
narios, the specific values transmitted by an attacker are not
necessarily relevant, but what is of interest is whether a
receiving vehicle makes incorrect decisions about the state
of the world. Application metrics aim to capture this subtle
concept into a concrete metric. These metrics are useful,
because they can also consider errors from other (i.e., non-
malicious) sources, and are independent of a deep understand-
ing of the detection mechanism. However, they require an
application implementation, which is bug-prone and makes
attacker implementation more complex.

One specific category application metrics is that related to
schemes that detect routing misbehavior. Because routing mis-
behavior is historically closely linked to evaluation of routing
schemes, some authors use routing performance metrics (such
as arrival rates, consumed bandwidth and similar metrics) and
changes to vehicle mobility [5], [6].

Another class of application metrics is much closer to the
data that many data-centric detection mechanisms analyze; for
example, this includes collision avoidance applications [7],
[8] and in-network aggregation [9]. A disadvantage of these
strategies is that it is hard to use them as a baseline for other
studies, because often they are very specific.

b) Detector specific metrics: Some detectors have known
sources of potential errors, often inherent to their design; a
common strategy to deal with this is to approach and analyze
these issues specifically. This is particularly useful when it is
very clear what kind of error sources are to be considered.
For example, Bimeyer et al. [10] used this type of metric to
also include GPS error as a potential source of additional false
positives for their scheme to analyze these effects in detail.

Another example of such an approach would be an eval-
vation where the impact of the attacker on the analyzed
variable is. This only works for continuous variables, such
as position information, where a simple distance metric is
available to estimate the error between real positions and
falsified positions. Rather than looking at how well attacks
are detected only, this strategy would measure the distance
between accepted attacker-generated data that is accepted as
valid, and use this as a metric for detection quality. This

approach is also viable if error sources are considered for
legitimate vehicles. A disadvantage of this approach is that
it may only be suitable for specific classes of detectors (or at
least, it may put other detectors at a disadvantage).

C. Other Metrics

There are many other types of metrics available to authors
seeking to evaluate their detection mechanisms. Some notable
examples include:

a) Detection Latency: the time required for an attack to
be detected. The exact definition of this metric differs type of
detector, but typically it is the time between the first malicious
packet received and the first detected malicious packet. This
is particularly significant to measure the impact of reputation
abuse in trust-based node-centric detection mechanisms: if
trustworthy vehicles transmit malicious information, the po-
tential impact of an attack is large.

b) Computational Cost: although relatively uncommon
for vehicular networks, more traditional benchmarks such as
computational cost can also be used. Most authors only check
whether reasonable estimates of locally received messages can
be analyzed in reasonable time (which, using 100 vehicles
in range transmitting at 10Hz, is at most a millisecond per
message), but particularly with proposals that include multiple
detectors, scalability could be an issue.

¢) Financial Cost: traditional IDSs are commonly eval-
uated by examining the cost associated with response and the
corresponding variants in the confusion matrix [11]. In the
case of vehicular networks, this is a bit more complex: the
cost of a false negative is difficult to estimate, and strongly
dependent on the scenario (i.e., high speed collisions have
much higher cost, even though the classification of the event
is exactly the same). Estimating this cost is also ethically
complicated, because human lives are included in this process,
which suggests that such an evaluation requires more extensive
knowledge on how to deal with this suitable (as done, e.g., in
invasive medicine).

d) Stability & Usability: one factor that is often forgotten
or stated as future work only is that the detection mechanism
should be sufficiently stable, such that the users’ experience
with the system is good enough. This is important, because
users’ trust in the system is strongly dependent on their
perception of the systems’ reliability. If the system continually
warns or makes changes in response to possible attacks, but
has an overall higher performance than other systems, then
users may still perceive that system as very unreliable. This is
one point where node trustworthiness over time will perform
significantly better.

IV. RECOMMENDATIONS

We recommend authors to follow the developments in the
simulation community, and take note of extensive standardized
scenarios, such as the LuST scenario [12] for traffic simula-
tion. This also includes pro-actively porting source code that is
under development to more recent versions of the simulation
environment wherever possible: ideally code should always



be based on the most recent stable version of the simulator
available while the paper is under review. This allows authors
to benefit from quality of life improvements in the simulation
environment, but allows them to consider, e.g., newer channel
models.

For reasons outlined above, we also recommend using a
variety of different attack strategies, which ideally have very
different goals. This ensures that the authors can describe the
qualities, as well as the limitations of their detector, which
in turn can help future authors decide whether new attacks
against this detector may be possible. It is also important to
define a baseline in addition to these attacks, which can be
undertaken in various ways (and this depends strongly on what
the authors actually designed), and if possible a simulation of
potential non-malicious sources of error. The simplest example
is GPS error: adding an error to a GPS coordinate is relatively
simple, but it makes the results much more representative than
an idealized perfect positioning system for each vehicle, where
it just “knows” its’ position.

The authors should at least consider how they aggregate
the detection results across messages, vehicles and simulation
repetitions, as discussed above, and clearly specify their ap-
proach. If possible, we recommend developing the simulation
in such a way that multiple aggregation approaches can be
used; there may not be a one size fits all solution.

Finally, we recommend publishing source code, or at least
making it available to other researchers on request. This
enables reproducibility, one of the core principles of scientific
research, which allows research in this area to make faster and
more meaningful progress. It would also enable studies that
analyze the behavior of a variety of algorithms in different
settings a much more efficient and less error-prone process.
Finally, the authors themselves benefit from this process,
because it is easier to compare to the literature.

V. CONCLUSION

In this paper, we have discussed several evaluation ap-
proaches for misbehavior detection. After describing several
challenges and briefly surveying existing solutions, we gave
some concrete recommendations that should be useful for
authors that are studying misbehavior detection mechanisms.
We plan to use these recommendation in combination with a
framework that we are developing, named Maat, to evaluate
potential detection mechanisms. As part of this project, we are
also looking to decouple the execution of the simulation and
the detection mechanisms, which would enable us to provide a
data set to the community in addition to publishing our results.
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