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Abstract—The increasing availability of 10G Ethernet network
capabilities challenges existing transport layer protocols. As
10G connections gain momentum outside of backbone networks,
the choice of appropriate TCP congestion control algorithms
becomes even more relevant for networked applications running
in environments such as data centers. Therefore, we provide an
extensive overview of relevant TCP congestion control algorithms
for high-speed environments leveraging 10G. We analyzed and
evaluated six TCP variants using a physical network testbed,
with a focus on the effects of propagation delay and significant
drop rates. The results indicate that of the algorithms compared,
BIC is most suitable when no legacy variant is present; CUBIC
is suggested otherwise.

I. INTRODUCTION

The concept of layering separates concerns on different
levels of network protocols. However, there are obvious and
less obvious dependencies between different layers. While
higher layers build on the services of lower layers, the ac-
tual characteristics of the lower layers also influence those
higher layers. The transport layer is responsible only for
providing end-to-end communication services between remote
applications. Idealy, characteristics of lower layers should not
influence its behavior. However, congestion avoidance, one of
the common services of transport layer protocols, relies on a
set of properties of the underlying network links, primarily
latencies, drop rates, error rates, and bandwidth.

Due to this fact, advances in network technologies also
have an effect on the behavior of higher protocols. For the
predominantly TCP/IP-based stack of the Internet, continuous
advances over the past decades have led to an increase of avail-
able bandwidth by several orders of magnitude, significantly
affecting the performance of congestion control algorithms.
The interplay of bandwidth, latency, and packet loss is key to
all congestion control algorithms when balancing optimal link
utilization while still preventing network congestion. When the
increasing link bandwidth raises the bandwidth-delay product
(BDP), the effects of occasional packet loss impacts the
utilization disproportionally and requires counter-measures by
extending TCP [6].

Furthermore, specific TCP congestion control algorithms
have emerged to address the challenges introduced by high-
speed networks. By adapting behavior and optimizing window
parameters, these TCP variants aim for better and faster utiliza-
tion while still remaining fair to unmodified TCP connections.

With the advent of widely available 10G Ethernet networks,
the current state of the art of TCP comparisons primarily
focusing on 1G becomes outdated. In this paper, we provide
an in-depth comparison of various different TCP variants in a
physical 10G network testing environment.

The remainder of this paper is organized as follows. Sec-
tion II introduces the TCP variants to be evaluated and points
to previous work that also compared TCP in high speed
networks. In Section III, we present our methodology and the
metrics used for our comparison. Section IV illustrates our
test setup for the evaluation. In Section V, we discuss our
results, and summarize take aways in Section VI, followed by
a conclusion in Section VIIL.

II. BACKGROUND

In this section we give background information about the
evaluated TCP variants. Furthermore, the related work section
summarizes other relevant papers comparing TCP variants and
their results.

A. TCP Congestion Control Algorithms

The following provides a brief overview of these widely
known TCP congestion control algorithms: TCP Reno, Scal-
able TCP, HS-TCP, H-TCP, BIC and CUBIC. Here, we
only provide the additive increase and multiplicative decrease
(AIMD) parameters, which are of particular interest for our
analysis. The reader is referred to the original literature
for more detailed information. The AIMD behavior can be
described with an additive parameter (ACK received) and a
multiplicative parameter (triple duplicate ACK, packet lost):

ACK : cund + cwnd + « @9)]
LOSS : cund < cwnd - 8 2)

Note that for small congestion windows (cwnd), all of these
variants fall back to behave like Reno.

a) TCP Reno: TCP Reno is the most common TCP
variant, and is also referred to as standard TCP. This variant
initially uses slow start (a« =1, § = %); after the first loss, o
is set to —L—.

b) Scalable TCP: Scalable TCP [8] is designed to
achieve high throughput more quickly than Reno by making
the recovery time independent of window size, which is
beneficial for high bandwidth, high latency links. The AIMD
parameters for Scalable TCP are v = 0.01 and 5 = 0.875.



c) HighSpeed TCP: HighSpeed TCP (HS-TCP) [2] is
designed to increase robustness of the transmission rate against
packet loss, which is especially important for networks with
long links. For this algorithm, the following AIMD parameters
apply: o = fo(cwnd)/cwnd and 8 = gg(cwnd), where gg
(decreasing) and f, (increasing) are logarithmic functions.

d) H-TCP: H-TCP [9] is designed to provide a better use
of bandwidth for long, high-speed links with high BDP, while
maintaining backwards compatibility with regular TCP flows.
Unlike previous approaches, the authors use the time (A)
since the last congestion event to set the AIMD parameters,
which can be summarized as follows: o = W
and 8 = gg%;a’;, unless the measured throughput changes
significantly (controlled with a parameter A = 0.2). fo(A)
is 1 for backwards compatibility (below a threshold Ap);
fa(A) = 14+ 10(A — Ar) + 0.25(A — Ar)? is suggested
to achieve high utilization quickly.

e) BIC TCP: BIC TCP [13] was developed to address
the observed suboptimal RTT fairness of earlier congestion
control algorithms. RTT fairness refers to fairness between
flows with different RTTs. The authors point out that the
problem is inherent to the increased utilization, due to the
way earlier algorithms are designed, and develop BIC to solve
this challenge. Their algorithm uses two phases to update the
bandwidth; linear increase to approach a fair window size,
and binary search to improve RTT fairness. Linear increase
is similar to additive increase, while binary search essentially
uses two window sizes (W4, and W,,;,,) that updates these
windows and the actual window size to approximate the
optimal window size. Once W,,,,, and W,,;, are converging,
BIC falls back to linear increase.

f) TCP Cubic: CUBIC TCP [3] is an improvement of
BIC, which aims to compensate the aggressive behavior of
BIC to more reasonable levels, and simplifies the algorithm.
The impact of this aggressive behavior was especially notable
in networks with low RTT. Like BIC, CUBIC uses the W,
window; however, it sets the window size using a cubic
function that plateaus at Wy, q.:

W(t) =C- (t - K)g + Whaz 3)

where C' is a scaling factor, ¢ the time since the last window

reduction and K = /W4, - 8/C. This results in a window

increase that is similar to BIC’s binary search.

B. Related Work

There are many TCP performance evaluation papers that
cover environments with link speeds up to 1 Gbps [4], [12],
but there are very few that look at 10 Gbps transmission rates.
In the following, we briefly review two relevant studies from
this body of work.

Li et al. [10] measured the performance of Scalable TCP,
HS-TCP, H-TCP, BIC and FAST-TCP on the basis of fairness,
backward compatibility, efficiency, and responsiveness includ-
ing convergence time. All tests were performed in a test setup
based on the dumbbell topology with two competing flows
starting at different points. The authors varied the parameters

of propagation delay (up to 320 ms), the bottleneck bandwidth
(up to 250 Mbps) and different numbers of parallel web
traffic flows. The tested TCP variants provide poor fairness
but better link utilization than standard TCP. Beyond that,
the algorithms Scalable TCP, HS-TCP and BIC suffer from
high convergence times. While this paper provides a detailed
overview and a comprehensive analysis of the different TCP
congestion control algorithms and their performance, the re-
sults are not transferable to high-speed networks because
congestion control algorithms behave differently depending
on bandwidth. For example, the additive increase function
changes linearly with the bandwidth in Scalable TCP and
Reno, but logarithmically in HS-TCP as we describe in more
detail in the following section. Similarly, the behavior of BIC
and CUBIC depends on time and bandwidth differently than
the other variants. Therefore, results of lower bandwidth tests
do not apply to networks with higher bandwidth.

Arokkiam et al. [14] evaluated the performance of the
TCP variants Reno, BIC and H-TCP over XG-PON. The
authors assess the results on the basis of efficiency, fairness,
responsiveness and convergence. One single or two competing
highspeed flows were induced, alternately with or with no
competing UDP background traffic, into a 10 Gbps XG-
PON network. All algorithms show good link utilization in
a single flow environment with very small RTTs, but the link
utilizations decreases with increasing round-trip times. With
two competing flows with different starting times the authors
were not able to achieve a proper convergence between the
flows. With existing background traffic, two new TCP flows
show varying convergence behavior. This paper provides an
extensive analysis of the mentioned TCP variants. However,
key variants such as CUBIC and HS-TCP are missing.

III. METHODOLOGY

We chose an experimental approach for our comparison.
Utilizing a dedicated testbed, we conducted a large number of
measurements of the different TCP variants recording various
metrics.

A. Use Cases

Because we focus on high-speed networking, we motivate
our tests with a traffic pattern and workload typical for data
centers. For economic reasons, Ethernet has been replacing
more specialized link layer technologies within data centers
for TCP/IP-based networks. Alizadeh et al. [1] analyzed large
amounts of data center traffic and identified two major traffic
types: (i) relatively short flows with low latency requirements
and (ii) large flows requiring high throughput. The former type
is primarily a result of web application requests, database
queries, and similar interactions within distributed applica-
tion architectures. The latter type is based on long-running
interactions, such as software updates, continuous database
replications, data-intensive application workloads, or backup
processes.

For our own experimental setup, we concentrate on this
second traffic type, as it is more interesting to consider for



high-speed networks. When long-running, latency-insensitive
flows concurrently compete for utilization on a shared high-
speed network, characteristics of different congestion control
algorithms become apparent.

Furthermore, we include network traffic both inside and
between data centers. The intra-data center traffic is the more
obvious use case and is characterized by shorter physical
links and corresponding lower end-to-end latencies between
nodes. The inter-data center traffic represents communication
between geographically separated data centers, yielding much
higher latencies. This use case includes the usage of multiple
data centers for higher availability, increased locality, and
improved resilience. Still, the traffic patterns between sites
yielded by continuous data synchronization, database repli-
cation, and periodically disseminated backup remains very
similar to traffic within a single data center site. Note that
we expect data centers to have dedicated remote connections,
as we do not take into account background Internet traffic for
our tests.

Although we motivate our experiments with large flows
between and within data centers, we believe that results can
be generalized to many other use cases with similar traffic and
network infrastructure properties.

B. Criteria

We used the five criteria used by Li et al. [10] and adapted
them to the aforementioned use cases where necessary.
Responsiveness describes the ability of the algorithms to
recover quickly from random packet loss. We measure the av-
erage throughput at different drop probabilities for a packet in
the network. We also measured this with different propagation
delays as this has a major impact on the recovery speed.
Efficiency is the utilization of the network resources. A
protocol is efficient if the available bandwidth at the bottleneck
is utilized as fully as possible. In some applications—in
addition to this metric—not only the average utilization is
important but also the maximum and minimum utilization.
For instance, when incoming data is processed immediately,
applications will be slowed down if the bandwidth fluctuates
heavily. Therefore, we chose to also assess the quantiles to
measure if high throughput at its peaks can be accomplished
(Q 0.75), if the average throughput is acceptable (Q 0.5)
and if the throughput has an acceptable minimum (Q 0.25).
In addition to the responsiveness, which shows the average
throughput, this metric shows how stable the algorithms are.
We measure Fairness with Jain’s fairness index [7]:
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with x; being the mean of flow ¢ with n flows overall. We
analyze two flows running in parallel, each with the same
configuration, e.g. TCP variant and parameters. A perfect
algorithm would result in J = 1, worst case would be J = %

Backwards compatibility is a measurement of fairness
within networks where older systems are still in use. We
adapted our fairness test by using Reno for congestion control
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Fig. 2: Extended Dumbbell Topology.

in one of the two flows to evaluate how the congestion control
algorithms behave in networks with legacy systems. Reno was
chosen as it is the most common legacy variant still in use.

e-Convergence time t. was defined by Li et al. [10] as the
time required for the short-term average throughput to achieve
€ - u;, where u; is the long-term average throughput of stream
i. Here, the short-term average throughput is defined as:

ui(t+0)=(1—=A)-u(t) + )\%

Where Awu is the number of bytes transferred, and A is a
parameter that specifies how quickly the short-term average
throughput changes. In practice, we observe that the new
stream always takes a longer period of time to converge to
its long-term average throughput; results from [10] suggest
that convergence time should be measured by analyzing this
new stream. Extending the metric provided in prior work,
we compute the average distance from the long-term average
throughput after the convergence time is reached, in order to
quantify the stability of this convergence, which we refer to
as spread (where T' is the number of measurements):

T -
5 — Zt:tc Ui — ui(t)]
T

For every TCP variant, we conducted tests for each afore-
mentioned metric using the test setup described in the follow-
ing section. Every test was conducted five times over a period
of 15 min to ensure that measurement errors can be ruled out
and random deviations do not distort the results.

IV. TEST SETUP

Our test setup is based on the standard dumbbell topology
with two senders and two receivers (Figure 1). Each of them is
equipped with HP NC523SFP Dual 10 Gbps NICs and Ubuntu
14.04.1 (Linux 3.16). We used 10G Ethernet with IPv4 on the
lower layers as these are the most common protocols in our
use cases. For the efficiency and responsiveness measurements,
only one sender and one receiver were active. Two HP 5920
JG296A switches (Firmware HPE Comware Software, Version
7.1.045, Release 2422P01) were used to combine and separate
the flows. Flow control in the switches was turned off. The
program iperf3 was used to produce TCP traffic with up to
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Fig. 3: Ring configuration in the state-owned research network.

TABLE I: Used TCP parameters.

TCP variant
Scalable

Parameters

a = 0.02,8 =0.875,
Low_Window = 50

HS-TCP Low_Window = 38,
High_Window = 83000,
High_P = 10~ 7, High_Decrease = 0.1
BIC Smaz = 16, B = 4,8 = 2,
Low_Window = 14
CUBIC B =717/1024,
legacy if cwnd < Wicp(t)
H-TCP AL =15, Ap =02

10 Gbps for each sender. Several adjustments in the software
settings were necessary to enable the senders to satisfy the
bandwidth requirements. For example, Large Receive Offload
(LRO) and Generic Receive Offload (GRO) had to be turned
off. LRO and GRO merge packets in the NIC upon receiving
them. As the loss of one packet means that the whole group has
to be resent, this can lead to very low link utilization. The TCP
Window Scaling Option had to be turned on to allow bigger
window sizes exceeding the default maximum of 65535 bytes
to a maximum of 1 GiB. The TCP Timestamp which extends
the TCP header by 8 bytes was deactivated as it is not used
in our scenarios and the bandwidth can therefore be used
for payload instead. TCP selective acknowledgement (TCP
SACK) was activated to accommodate the high number of
packets in 10 Gbps networks and to avoid retransmissions. The
Nagle Algorithm to facilitate groupings of small data amounts
to bigger segments was also turned on to allow for higher
throughput. Table I shows our settings for the TCP variants
and when they fall back to legacy mode. These values are the
default values of Linux 3.16 and are predominantly based on
the parameters set by the original developers of the congestion
control algorithms. For further details on how to facilitate
such tests and which points to consider when setting up a
TCP benchmarking environment, we refer to our extensive
discussion in [11].

To test our criteria, the test network had to fulfill two
essential requirements: Variable propagation delay and an
adjustable drop rate. To achieve this, the dumbbell topology

was extended as described in the following.

We used a dedicated, state-owned research network which is
equipped with configurable 10x10 Gbps connections between
research institutions in Ulm, Tiibingen, and Karlsruhe to
achieve variable propagation delay, as shown in Figure 3. The
connections between the universities were used to form 4 ring
structures between the locations. The rings begin and end in
Ulm at the patch panel directly connected to the switches used
for the tests. There are 38 transceivers but no switches within
one 534 km long ring yielding a delay of 6 ms. Connecting all
four rings therefore enables us to induce up to 24 ms of real
physical delay in our tests. This network setup experiences
rare bit flips, which in turn cause retransmissions of TCP
packets. Those retransmissions can be observed 15 times on
average with a standard deviation of 2.8 within a 15 min test
at 10 Gbps. Therefore, the likelihood of a loss to occur is
2.2 x 1078 for every packet. For comparison: to comply with
802.3ae [5], the error rate of optical fiber connections cannot
exceed 1 x 10712, At the time of writing, the cause of these
errors could not be found. However, in the following sections,
we clearly document when this error has an impact on the
quality of the results.

A NetFPGA 10G Card as a standalone bump-in-the-wire
device was used to realize the adjustable drop rate. The refer-
ence NIC implementation of the NetFPGA project was used
and adjusted to our needs'. In its standard configuration the
card is a simple forwarding device at linespeed. Our extension
makes it possible to set an evenly distributed likelihood for a
packet to be dropped.

The NICs are able to send 9.5 Gbps without using jumbo
frames and are only able to send full 10 Gbps with jumbo
frames activated. Unfortunately, jumbo frames are not sup-
ported by the NetFPGA. Therefore, all tests were conducted
with a maximum throughput of 9.5 Gbps per NIC.

Table II shows an overview of all undertaken tests and the
achieved results. As every permutation of variant, RTT, and
drop rate or second variant was tested and every test was
conducted five times, a total of 1,280 tests were undertaken.

V. RESULTS

Testing the responsiveness and efficiency at an RTT of
0.2 ms and without packet drops, every TCP congestion
control algorithm fully utilizes the link, as can be seen in
Figure 4a. Even with drop rates of up to 1 x 1079, the average
path utilization does not fall under 9.48 Gbps. At a drop
rate of 1 x 10~°, however, Reno and CUBIC show significant
performance losses. CUBIC shows the same behavior as Reno
because it operates in legacy mode and thus behaves just like
Reno in this scenario. The other variants perform significantly
better with a cwnd that is at least 10 times bigger. At a drop
rate of 1 x 10~ packets, it can clearly be seen that BIC works
best in lossy networks with low latency and reaches 8.3 Gbps.

Without additional delay in the network, all variants are
equally efficient and show low scattering without packet drops.

Ihttps://github.com/NetFPGA/



TABLE II: Test overview; every listed parameter permutation was tested.

Criterium Metrics Parameters # of Tests
Responsiveness Average throughput ) Drop rate:
Variant: RTT: ) 840
Efficiency Throughput distribution 0or107%i € {7,6,5,4,3,2}
R Reno, 0.2 ms,
Fairness Jain’s Fairness Index, Scalable, X 62ms, X 120
Downwards compatibility Link utilization HS-TCP, 12.2 ms, 110
BIC, CUBIC, 24.2 ms p
3 n .
Convergence time Convergence time, Spread H-TCP Variant for 2 ﬂow. 220
same as first variant or Reno
3 1,280
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Fig. 5: Responsiveness & efficiency at 6.2 ms RTT.

Differences occur only at 1 x 1075 and above when CUBIC
and Reno start to perform worse than the other variants. Q(0.5)
is 8.6 Gbps, Q(0.25) 8.4 Gbps and Q(0.75) is 8.8 and 8.9 Gbps
respectively. They both show the same behavior as CUBIC
is in legacy mode. At a drop rate of 1 x 10~%, CUBIC and
Reno show significant scattering of 1.5 Gbps between 4 and
5.5 Gbps; 25% of all values lie above 4.8 Gbps.

As Figure 4b shows, the differences between congestion
control algorithms become apparent at a drop rate of 1 x 1073,
Reno, CUBIC and HS-TCP show the same behavior with

bandwidth scattering between 1.9 and 2.7 Gbps. BIC performs
best and reaches up to 8.5 Gbps with 50% of all measurements
between 8.2 and 8.27 Gbps.

With an RTT of 6.2 ms, different behavior than with 0.2 ms
can be observed with drop rates above 1 x 10~7 (Figure 5a).
Reno reaches only 3.6 Gbps while the high-speed variants
reach the uppermost limit, with the exception of H-TCP
with 9.35 Gbps. At a drop rate of 1 x 1075, Reno reaches
1.4 Gbps. CUBIC (6.26 Gbps) and HS-TCP (6.52 Gbps) also
show significant performance drops, despite not performing



in legacy mode. H-TCP with a similar cwnd still shows
better performance than the aforementioned variants as the
algorithm raises the bandwidth faster after a reduction. Note
that BIC outperforms all other algorithms. Even at a drop
rate of 1 x 102 BIC still reaches an average throughput of
2.3 Gbps while every other variant lies below 1 Gbps. BIC’s
very good performance can also be observed in Figure 5b
showing the efficiency at a 1 x 10~5 drop rate.

At 12.2 ms RTT — as can be seen in Figure 6a— Reno loses
bandwidth even with low drop rates quite drastically. The other
variants show very diverse reactions. At 1 x 10~°, only BIC
can keep the bandwidth high with 4.9 Gbps on average. The
runner-up, Scalable, only reaches 1.6 Gbps.

Reno only reaches the bandwidth it does because of a high
throughput in the beginning of the test, because with very low
drop probability, it takes several seconds for the first drop
to occur. After the first drop, Reno only reaches between
949 Mbps and 1.8 Gbps at 1 x 10~7 drop rate. At a drop
rate of 1 x 1075 (Figure 6b), some variants but especially
H-TCP and HS-TCP show high scatter. H-TCP reaches a an
average of at least 6.2 Gbps in 75% of all measurements.
HS-TCP reaches an average of 3 Gbps. However, 50% of
all measurements lie between 1.7 and 2.9 Gbps. The highest
bandwidth is 9.42 Gbps, the lowest 611 Mbps.

At an RTT of 24.2 ms, the aforementioned CRC errors
in the networks warp the results (Figure 7a). Even with no
induced drop rate, the errors from the network infrastructure
lead to low throughput for some of the variants. Relative to the
other variants, CUBIC’s performance improves significantly
with higher RTT, which shows that CUBIC is designed with
high RTTs in mind. At 12.2 ms, CUBIC reached 71% of the
throughput of H-TCP at a drop rate of 1 x 107%; at 24.2 ms
it already reaches 78%.

The effects that can be observed at 12.2 ms are even more
significant at 24.2 ms. The network CRC errors also take
their toll, as can be seen in Figure 7b. Reno loses bandwidth
solely because of the scarce CRC errors and the following
retransmissions and fluctuates heavily between 742 Mbps and
9.48 Gbps. HS-TCP is also highly influenced by the errors.
50% of the measurements show an average of 4.5 to 7.3 Gbps.
Outliers can be observed between 3.3 Gbps and 9.48 Gbps.

It comes with no surprise that in a local network with no
additional latency (0.2 ms)— shown in Figure 10—all TCP
congestion control algorithms show complete fairness. The
biggest difference between the two flows is 150 Mbps and
the two flows utilize the ring fully (Figure 8a). Even legacy
Reno performs as well as the other variants. The bandwidth
utilization is lowest for CUBIC with 9.29 Gbps and best for
BIC with 9.42 Gbps for both flows combined. At 12.2 ms,
fairness lies between 0.96 (CUBIC) and 0.989 (BIC). The
very good fairness values come from the flows increasing
their bandwidth in parallel as their algorithms behave identical
under those circumstances and as there is no overload for
most of the test duration. A short overload period in the
beginning when both flows try to send at 10 Gbps and long
recovery times afterwards lead to very low link utilizations

between 3.6 Gbps and 5.6 Gbps with all variants. Reno
performs worst in this regard but the other variants HS-
TCP, H-TCP and CUBIC show little improvement. BIC and
Scalable perform best. With even longer recovery times, the
link utilization becomes worse with an RTT of 24.2 ms. Here,
H-TCP performs a lot better than before compared to the other
variants. Except for HS-TCP, all variants show more than two
times the link utilization of Reno. The logarithmic functions
of HS-TCP seem to work badly with high latency.

The resulting fairness is worse for every permutation when
the different variants are not competing with themselves but
with Reno to evaluate downwards compatibility, which can be
seen in Figure 8b. With higher RTT, the flow with the high-
speed variant always takes more bandwidth than the Reno flow
as the algorithms have a shorter recovery time after packet
drops. H-TCP, CUBIC and HS-TCP are the fairest which
negatively reflects in their results concerning link utilization as
a fair bandwidth propagation means more bandwidth for Reno
and less bandwidth for the high-speed flows with a therefore
smaller cwnd. Hence, in case of overload, the high-speed flow
needs more time to recover and the link utilization is lower.
As BIC and Scalable are less fair, the overall link utilization is
higher, which becomes especially apparent with 24.2 ms RTT.

In previous work [10], evaluating the convergence time, A
was not clearly specified: we set A = 0.1, which appeared
to be a good trade-off; a smaller \ leads to a smoother
convergence, but increases the overall convergence time. It is
out of scope for this work to provide an extensive analysis
of the effect of this metric parameter (just as we do not
change the ¢ = 0.8 given by Li et al. [10]). Instead we
measured the effect of round trip time and congestion control
algorithm on e-convergence time. In addition, we computed
a measure for the stability of this convergence, as discussed
in Section III-B. The results are shown in Figure 9, where
the bar chart represents convergence time and the scatter plot
reflects the spread. For clarity, we left out the measurements
with an RTT of 0.2ms: these measurements converged virtually
instantly with very little spread. A significant result is that any
high speed TCP variant leads to a very unstable convergence
when streams with Reno are involved. This is due to the
fact that the distribution of bandwidth is very uneven (see
Figure 10), which amplifies the effects of retransmissions
and leads to higher spread. As expected, Reno itself shows
unstable behavior as the RTT increases. This is related to the
fact that Reno’s responsiveness is dependent on RTT, and it
was one of the reasons the new congestion control algorithms
were developed in the first place. Finally, we point out that
convergence time goes down as the RTT increases, which is
in part due to reduced utilization. This reduced utilization is
caused by the CRC failures of the link, as discussed in the
setup.

VI. TAKE AWAYS

It becomes evident that, when there is no packet loss in the
network, the actual TCP variant has no strong influence on
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Fig. 6: Responsiveness & efficiency at 12.2 ms RTT.
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Fig. 7: Responsiveness & efficiency at 24.2 ms RTT.

the performance. However, as soon as there is packet loss —
especially with noticeable RTT — the congestion control algo-
rithm affects the quality of service—e.g., link utilization and
responsiveness — immensely.

Taking into account our use cases mentioned before, BIC
shows the best properties for intra-data center and inter-data
center communication alike. Especially for higher drop rates,
BIC outperforms every other variant. In every test, BIC shows
the best behavior or—in case of link utilization and fairness
against itself —is one of the best variants.

However, when looking into backwards compatibility, BIC
shows its weakness. Like HS-TCP and Scalable, at an RTT of
6.2 ms, BIC dominates the network link. Here, CUBIC is by
far the best alternative, which also performs well in the other
tests. At an RTT of 12.2 ms and above, fairness becomes less
important as low link utilization leads to a network without
overload and therefore enough bandwidth for every user.

The decision as to which variant is best for a network cannot
be based on a general answer. It depends on the amount
of influence one has over the network. For example, if the
network is within a data center where every system is under
control of the local administrators, our analysis shows that BIC

should be used on every system. However, the variants we
investigated are all developed with downwards compatibility
to Reno in mind and other variants that were not part of our
analysis might perform better in this scenario. On the other
hand, CUBIC is the best choice if the composition of the
network components is not known and older systems might
still be present, as it offers a reasonable trade-off between link
utilization and efficiency on the one hand and also fairness
towards other systems on the other hand.

VII. CONCLUSION

In order to assess the performance and behavior of TCP
congestion control algorithms in 10G Ethernet networks, we
evaluated TCP Reno and five modern variants (Scalable TCP,
HS-TCP, BIC, CUBIC, and H-TCP) in a separate test environ-
ment. While we induced drop rates with a custom NetFPGA
device, we caused latencies by using a dedicated research
network with wide-area physical links yielding actual prop-
agation delay. For each variant, we assessed responsiveness,
efficiency, fairness, downwards compatibility, and convergence
time with varying RTT and drop-rate parameters. In total, we
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executed more than 1,200 isolated test runs to collect data for
all metrics.

While all modern variants generally outperformed TCP
Reno in a 10G setting, the comparison among the other
variants yielded more varying results. BIC leads most of our
results in the test setup due to its aggressive behavior. At the
same time, BIC performed poorly at backwards compatibil-
ity and its applicability in higher-latency and heterogeneous
networks should be considered carefully. For such networks,
CUBIC may represent a more appropriate alternative. In
summary, we recommend the switch to a modern TCP variant
for 10G networks and the selection of a variant based on
the predominant latency and drop rate characteristics that the
networked applications will experience in that network.

A. Future Work

While we compared several loss-based congestion control
algorithms that promise downwards compatibility to legacy
TCP variants such as Reno, algorithms that were not designed
with this in mind, promise improved bandwidth utilization.
One example for such a TCP variant would be the delay-based
TCP Vegas algorithm. Application of delay-based algorithms
in a heterogeneous network with loss-based variants present is

still an open challenge. In more homogeneous networks, how-
ever, these variants could significantly improve performance.

Furthermore, we used the dumbbell topology for our test
setup in line with prior research. However, more complex
topologies such as the parking lot topology could yield more
insights whether certain TCP congestion control algorithms
are suitable for corresponding scenarios.
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